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Abstract: In this paper, we combine the periodogram method for perturbed block Toeplitz matrices
with the Cholesky decomposition to give a parameter estimation method for any perturbed vector
autoregressive (VAR) or vector moving average (VMA) process, when we only know a perturbed
version of the sequence of correlation matrices of the process. In order to combine the periodogram
method for perturbed block Toeplitz matrices with the Cholesky decomposition, we first need to
generalize a known result on the Cholesky decomposition of Toeplitz matrices to perturbed block
Toeplitz matrices.

Keywords: parameter estimation; periodogram method for perturbed block Toeplitz matrices; the Cholesky
decomposition; vector autoregressive (VAR) processes; vector moving average (VMA) processes

1. Introduction

The Cholesky decomposition has been widely used in statistical signal processing. For instance,
it has been used for parameter estimation of vector autoregressive (VAR) processes and for parameter
estimation of vector moving average (VMA) processes. Specifically, the parameters of a VAR process
can be directly obtained from the Cholesky decomposition of the inverses of its correlation matrices,
and the parameters of a VMA process can be directly obtained from the Cholesky decomposition of its
correlation matrices. However, when real-world problems are considered, what we usually know is
a perturbed version of the sequence of correlation matrices of the process involved.

In this paper, we use the Cholesky decomposition to give a parameter estimation method for
any perturbed VAR or VMA process, whenever the sequence of correlation matrices of the perturbed
process is asymptotically equivalent to the sequence of correlation matrices of the original process in the
Gray sense [1]. Specifically, our parameter estimation method combines the Cholesky decomposition
with the periodogram method for perturbed block Toeplitz matrices presented in [2]. In order to
combine them, we first need to generalize a result given in [3] on the Cholesky decomposition of
Toeplitz matrices to perturbed block Toeplitz matrices.

The paper is organized as follows. In Section 2, we set up notation and we review the periodogram
method for perturbed block Toeplitz matrices presented in [2]. In Section 3, we generalize a
result given in [3] on the Cholesky decomposition of Toeplitz matrices to perturbed block Toeplitz
matrices. In Section 4, we give a parameter estimation method for perturbed VAR and VMA
processes. Our parameter estimation method for perturbed VMA processes is there also applied
in another statistical signal processing problem, namely, in multiple-input multiple-output (MIMO)
channel identification.
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2. Preliminaries

In this section, we set up notation and we review the periodogram method for perturbed block
Toeplitz matrices presented in [2].

2.1. Notation

In this paper,N, Z,R, and C denote the set of natural numbers (that is, the set of positive integers),
the set of integer numbers, the set of real numbers, and the set of complex numbers, respectively.
CM×N is the set of all M×N complex matrices, IN stands for the N×N identity matrix, 0M×N denotes
the M× N zero matrix, and Vn is the n× n Fourier unitary matrix, i.e.,

[Vn]j,k :=
1√
n

e−
2π(j−1)(k−1)

n i, j, k ∈ {1, . . . , n},

with i being the imaginary unit. We denote by λ1(A), . . . , λn(A) the eigenvalues of an n× n Hermitian
matrix A arranged in decreasing order, ∗ denotes conjugate transpose, ⊗ is the Kronecker product,
E stands for expectation, and χS denotes the characteristic (or indicator) function of S ⊆ R, that is,

χS(ω) :=

{
1 if ω ∈ S,
0 otherwise.

If xk ∈ CN×1 for all k ∈ {1, . . . , n}, then xn:1 is the nN-dimensional vector given by

xn:1 =


xn

xn−1
...

x1

 .

If xn is a (complex) random N-dimensional vector for all n ∈ N, {xn} denotes the corresponding
(complex) random N-dimensional vector process.

Let An and Bn be nM × nN matrices for all n ∈ N. We write {An} ∼ {Bn} if the
sequences {An} and {Bn} are asymptotically equivalent (i.e., {‖An‖2} and {‖Bn‖2} are bounded
and limn→∞

‖An−Bn‖F√
n = 0 with ‖ · ‖2 and ‖ · ‖F being the spectral norm and the Frobenius norm,

respectively). We recall that the concept of asymptotically equivalent sequences of matrices was
introduced by Gray in [1] for the case in which M = N = 1.

If F : R → CM×N is a continuous 2π-periodic function, we denote by Tn(F) the block Toeplitz
matrix generated by F whose blocks are given by

[Tn(F)]j,k := Fj−k, n ∈ N, j, k ∈ {1, . . . , n},

where {Fk}k∈Z is the sequence of Fourier coefficients of F, that is,

Fk :=
1

2π

∫ 2π

0
e−kωiF(ω)dω ∀k ∈ Z.

2.2. The Periodogram Method for Perturbed Block Toeplitz Matrices

The following theorem, which was given in ([2], Theorem 4), provides a method to estimate the
generating function F when we only know a perturbed version of the sequence of block Toeplitz
matrices {Tn(F)}, namely, we only know a sequence of matrices {An} which is asymptotically
equivalent to {Tn(F)}.
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Theorem 1. Let An be an nM× nN matrix for all n ∈ N. Suppose that there exists a continuous 2π-periodic
function F : R→ CM×N such that limn→∞

‖An−Tn(F)‖F√
n = 0. Then

lim
n→∞

1
2π

∫ 2π

0
‖P̂An(ω)− F(ω)‖2

Fdω = 0, (1)

where P̂An : R→ CM×N is the 2π-periodic step function given by

P̂An(ω) :=
n

∑
k=1

χ [ 2π(k−1)
n , 2πk

n

)(ω)[(Vn ⊗ IM)∗An(Vn ⊗ IN)]k,k ∀ω ∈ [0, 2π).

Moreover, if F is a trigonometric polynomial there exists K ∈ [0, ∞) such that√
1

2π

∫ 2π

0
‖P̂An(ω)− F(ω)‖2

Fdω ≤ ‖An − Tn(F)‖F√
n

+
K√

n
∀n ∈ N.

The estimation method of the generating function F provided in Theorem 1 consists of the
sequence of functions {P̂An}. Observe that from Equation (1) the squared error made, when F is
estimated (approximated) by P̂An , tends to zero as n grows.

The correlation matrix of a random vector is a positive semidefinite matrix. Furthermore, if A is
a positive semidefinite matrix, then there exists a zero-mean random vector whose correlation matrix
is A. Therefore, {Tn(F)} is a sequence of positive semidefinite matrices if and only if {Tn(F)} is
the sequence of correlation matrices of certain wide sense stationary (WSS) N-dimensional vector
process (we recall that a random vector process {xn} is said to be WSS if its correlation matrices
E
(

xn:1x∗n:1
)

are block Toeplitz and its random vectors xn have the same mean). If {Tn(F)} is the
sequence of correlation matrices of a WSS vector process, the generating function F is called the power
spectral density (PSD) of the process. Therefore, Theorem 1 provides a method to estimate the PSD
(a spectral estimation method) of any WSS vector process, when we only know a perturbed version
of its sequence of correlation matrices. This spectral estimation method is a modified version of the
(averaged) periodogram method, because if N = 1 then

P̂Tn

(
2π(h−1)

n

)
= [V∗n TnVn]h,h = ∑n

k=1[V
∗
n Tn]h,k[Vn]k,h = ∑n

k=1[Vn]k,h ∑n
j=1[V

∗
n ]h,j[Tn]j,k

= ∑n
j,k=1[Vn]k,h[Vn]j,h[Tn]j,k =

1
n ∑n

j,k=1 e
2π(j−k)(h−1)

n i[Tn]j,k = PTn

(
2π(h−1)

n

)
, n ∈ N, h ∈ {1, . . . , n},

where {PTn} is the conventional spectral estimator, which is also known as the method of (averaged)
periodogram or as the Bartlett method (see, e.g., [4]), defined as

PTn(ω) :=
1
n

n

∑
j,k=1

e(j−k)ωi[Tn]j,k, n ∈ N, ω ∈ R.

3. A Note on the Cholesky Decomposition of Perturbed Block Toeplitz Matrices

We recall that if A is an n× n positive definite matrix, then there exists a unique n× n lower
triangular matrix L with [L]j,j > 0 for all j ∈ {1, . . . , n} satisfying that A = LL∗. This decomposition
of A (A = LL∗) is called the Cholesky decomposition of A. In ([3], Section 6.3) Gray gave a result on
the Cholesky decomposition of Toeplitz matrices. The following theorem generalizes this result to
perturbed block Toeplitz matrices. Furthermore, unlike in ([3], Section 6.3) we also give the convergence
speed of our result.

Theorem 2. Consider a continuous 2π-periodic function F : R→ CN×N whose sequence of Fourier coefficients
{Fk}k∈Z satisfies that F0 is lower triangular with [F0]j,j > 0 for all j ∈ {1, . . . , N} and F−k = 0N×N for all
k ∈ N. Suppose that An is an nN× nN positive definite matrix for all n ∈ N with {An} ∼ {Tn(F)(Tn(F))∗}
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(or equivalently, {An} ∼ {Tn(FF∗)}, where FF∗(ω) = F(ω)(F(ω))∗, ω ∈ R). Let An = LnL∗n be
the Cholesky decomposition of An for all n ∈ N. If {Ln} and {Tn(F)} are stable (that is, {‖L−1

n ‖2} and
{‖(Tn(F))−1‖2} are bounded) then

{Ln} ∼ {Tn(F)}. (2)

Moreover, there exists K ∈ [0, ∞) such that

‖Ln − Tn(F)‖F√
n

≤ K
‖An − Tn(F)(Tn(F))∗‖F√

n
∀n ∈ N. (3)

Proof. Applying ([5], Lemma 4.2) and ([5], Theorem 6.2) yields {Tn(F)(Tn(F))∗} = {Tn(F)Tn(F∗)} ∼
{Tn(FF∗)} (we recall that ([5], Theorem 6.2) was previously given for Hermitian generating functions
(see, e.g., [6,7], or ([8], Theorem 2))). Hence, since the relation ∼ is symmetric and transitive (see ([5],
Lemma 3.1)), {An} ∼ {Tn(F)(Tn(F))∗} if and only if {An} ∼ {Tn(FF∗)}.

The sequence {‖Tn(F)‖2} is bounded (see, e.g., ([5], Theorem 4.3) or ([9], Corollary 4.2)).
As {‖An‖2} is bounded and

{‖Ln‖2} = {‖L∗n‖2} =
{√

λ1(LnL∗n)
}

=

{√
‖LnL∗n‖2

}
=

{√
‖An‖2

}
,

{‖Ln‖2} is also bounded. Consequently, to finish the proof we only need to show Equation (3), or
equivalently, we only need to show that there exists K ∈ [0, ∞) such that

‖Ln − Tn(F)‖F ≤ K‖An − Tn(F)(Tn(F))∗‖F ∀n ∈ N. (4)

We have

‖Ln−Tn(F)‖F =‖Tn(F)(Tn(F))−1Ln−Tn(F)‖F

≤‖Tn(F)‖2‖(Tn(F))−1Ln− InN‖F≤‖Tn(F)‖2(‖(Tn(F))−1Ln−Dn‖F+‖Dn− InN‖F), (5)

where Dn denotes the nN × nN diagonal matrix satisfying that [Dn]j,j = [(Tn(F))−1Ln]j,j for all
j ∈ {1, . . . , nN} and n ∈ N. Since Tn(F) is lower triangular for all n ∈ N, (Tn(F))−1 is lower triangular
for all n ∈ N (see, e.g., ([10], p. 44)), and therefore,

1 = [InN ]j,j = [Tn(F)(Tn(F))−1]j,j =
nN

∑
k=1

[Tn(F)]j,k[(Tn(F))−1]k,j = [Tn(F)]j,j[(Tn(F))−1]j,j

for all j ∈ {1, . . . , nN} and n ∈ N. Thus,

[Dn]j,j = [(Tn(F))−1Ln]j,j =
nN

∑
k=1

[(Tn(F))−1]j,k[Ln]k,j = [(Tn(F))−1]j,j[Ln]j,j =
[Ln]j,j

[Tn(F)]j,j
> 0

for all j ∈ {1, . . . , nN} and n ∈ N, and hence,

‖Dn − InN‖F

=
√

∑nN
j=1 |[Dn− InN ]j,j|2=

√
∑nN

j=1 |[Dn]j,j−1|2=

√
∑nN

j=1

∣∣∣∣ ([Dn ]j,j)2−1
[Dn ]j,j+1

∣∣∣∣2=√∑nN
j=1
|[DnDn ]j,j−1|2
([Dn ]j,j+1)2

≤
√

∑nN
j=1 |[DnDn]j,j − 1|2=‖DnDn− InN‖F =‖DnD∗n− InN‖F =‖DnD∗n−(Tn(F))−1Ln(Ln)−1Tn(F)‖F

≤‖DnD∗n−(Tn(F))−1LnD∗n‖F +‖(Tn(F))−1LnD∗n−(Tn(F))−1Ln(Ln)−1Tn(F)‖F
≤‖Dn−(Tn(F))−1Ln‖F‖D∗n‖2 +‖(Tn(F))−1Ln‖2‖D∗n−(Ln)−1Tn(F)‖F
=‖Dn−(Tn(F))−1Ln‖F‖Dn‖2 +‖(Tn(F))−1Ln‖2‖Dn−(Tn(F))∗(L∗n)−1‖F
≤‖Dn−(Tn(F))−1Ln‖F‖Dn‖2

+‖(Tn(F))−1‖2‖Ln‖2(‖Dn−(Tn(F))−1Ln‖F + ‖(Tn(F))−1Ln−(Tn(F))∗(L∗n)−1‖F) ∀n ∈ N.

(6)
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As Tn(F) and Ln are lower triangular for all n ∈ N, (Tn(F))−1Ln and L−1
n Tn(F) are lower

triangular for all n ∈ N (see, e.g., ([11], p. 240)). Consequently, (Tn(F))∗(L∗n)−1 is upper triangular for
all n ∈ N, and therefore,

‖(Tn(F))−1Ln−Dn‖F =
√
‖(Tn(F))−1Ln−Dn‖2

F ≤
√
‖(Tn(F))−1Ln−Dn‖2

F+‖Dn−(Tn(F))∗(L∗n)−1‖2
F

=
√
‖(Tn(F))−1Ln−(Tn(F))∗(L∗n)−1‖2

F = ‖(Tn(F))−1Ln−(Tn(F))∗(L∗n)−1‖F ∀n ∈ N.
(7)

Combining Equations (5), (6), and (7) yields

‖Ln−Tn(F)‖F

≤ ‖Tn(F)‖2(1 + ‖Dn‖2 + 2‖(Tn(F))−1‖2‖Ln‖2)‖(Tn(F))−1Ln−(Tn(F))∗(L∗n)
−1‖F

≤ ‖Tn(F)‖2(1 + ‖Dn‖2 + 2‖(Tn(F))−1‖2‖Ln‖2)‖(Tn(F))−1‖2‖Ln−Tn(F)(Tn(F))∗(L∗n)
−1‖F

≤ ‖Tn(F)‖2(1 + ‖Dn‖2 + 2‖(Tn(F))−1‖2‖Ln‖2)‖(Tn(F))−1‖2‖LnL∗n−Tn(F)(Tn(F))∗‖F‖(L∗n)
−1‖2

= Kn‖An−Tn(F)(Tn(F))∗‖F

with Kn = ‖Tn(F)‖2(1 + ‖Dn‖2 + 2‖(Tn(F))−1‖2‖Ln‖2)‖(Tn(F))−1‖2‖L−1
n ‖2 for all n ∈ N. To prove

Equation (4) we only need to show that {Kn} is bounded, or equivalently, we only need to show that
{‖Dn‖2} is bounded. For every n ∈ N there exists j0 ∈ {1, . . . , nN} such that

‖Dn‖2=λ1(Dn)= [Dn]j0,j0 =
‖Dnej0‖F

‖ej0‖F
≤
‖(Tn(F))−1Lnej0‖F

‖ej0‖F
≤‖(Tn(F))−1Ln‖2≤‖(Tn(F))−1‖2‖Ln‖2,

where ej0 is the nN-dimensional (column) vector whose entries are given by [ej0 ]j,1 = δj,j0 , j ∈
{1, . . . , nN}, with δ being the Kronecker delta. Thus, {‖Dn‖2} is bounded.

Observe that Equation (3) shows that the sequence
{
‖Ln−Tn(F)‖F√

n

}
converges to zero at least as

fast as the sequence
{
‖An−Tn(F)(Tn(F))∗‖F√

n

}
does.

Equation (2) generalizes ([3], Section 6.3). Specifically, in ([3], Section 6.3) Gray proved Equation (2),
but only for the special case in which N = 1, F is in the Wiener class, and {An} = {Tn(FF∗)}
(or equivalently, {An} = {Tn(|F|2)}). It should be mentioned that unlike here, the convergence speed
of
{
‖Ln−Tn(F)‖F√

n

}
was not given in ([3], Section 6.3) for the special case there studied.

4. Applications of the Periodogram Method in Parameter Estimation

Using Theorems 1 and 2 we give in this section a parameter estimation method for perturbed VAR
processes and another for perturbed VMA processes. These methods can be applied in any real-world
problem where the random process involved is modeled as a VAR process or as a VMA process,
e.g., in damage detection for aeronautical structures or in MIMO channel identification.

4.1. Parameter Estimation Method for Perturbed VAR Processes

We begin by reviewing the concept of VAR process.

Definition 1. A zero-mean random N-dimensional vector process {xn} is said to be a VAR process if

xn = wn −
n−1

∑
k=1

F−kxn−k ∀n ∈ N, (8)

where F−k ∈ CN×N for all k ∈ N, and {wn} is a zero-mean random N-dimensional vector process whose
sequence of correlation matrices is given by {E

(
wn:1w∗n:1

)
} = {Tn(Λ)} with Λ being an N × N positive

definite matrix. If there exists p ∈ N such that F−k = 0N×N for all k > p, then {xn} is called a VAR process of
(finite) order p or a VAR(p) process.
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Let {xn} be as in Definition 1. Assume that {Fk}k∈Z, with F0 = IN and Fk = 0N×N for all
k ∈ N, is the sequence of Fourier coefficients of a continuous 2π-periodic function F : R → CN×N .
From Equation (8) we can obtain (see, e.g., ([12], Equation (20)))

(E (xn:1x∗n:1))
−1 = Tn(F∗)Tn(Λ−1)Tn(F) ∀n ∈ N.

If Λ−1 = LΛ−1 L∗Λ−1 is the Cholesky decomposition of the positive definite matrix Λ−1, then

(E (xn:1x∗n:1))
−1 = Tn (F∗LΛ−1) (Tn (F∗LΛ−1))

∗ (9)

is the Cholesky decomposition of the positive definite matrix
(
E
(
xn:1x∗n:1

))−1 for all n ∈ N, since

(E (xn:1x∗n:1))
−1 = Tn(F∗)Tn(LΛ−1 L∗Λ−1)Tn(F) = Tn(F∗)Tn

(
LΛ−1)Tn(L∗Λ−1

)
Tn(F)

= Tn (F∗LΛ−1) Tn
(

L∗Λ−1 F
)
= Tn (F∗LΛ−1) Tn

(
(F∗LΛ−1)

∗) ∀n ∈ N.

Observe that if we know the correlation matrix E
(
xn:1x∗n:1

)
for certain n ∈ N, then the

Cholesky decomposition of
(
E
(

xn:1x∗n:1
))−1 provides Λ and the parameters F−1, . . . ,F1−n of the

VAR process, because

Tn (F∗LΛ−1) =


LΛ−1 0N×N 0N×N · · · 0N×N

F∗−1LΛ−1 LΛ−1 0N×N · · · 0N×N
F∗−2LΛ−1 F∗−1LΛ−1 LΛ−1 · · · 0N×N

...
...

...
. . .

...
F∗1−nLΛ−1 F∗2−nLΛ−1 F∗3−nLΛ−1 · · · LΛ−1

 . (10)

However, in practice what we usually know is a perturbed version {An} of the sequence of
correlation matrices {E

(
xn:1x∗n:1

)
} of the process. The following theorem allows us to estimate Λ and

the parameters {F−k}k∈N of the VAR process from the Cholesky decomposition of the matrices of the
sequence {A−1

n }, when {An} ∼ {E
(

xn:1x∗n:1
)
}.

Theorem 3. Let {xn} be as in Definition 1. Assume that {Fk}k∈Z, with F0 = IN and Fk = 0N×N for all k ∈ N,
is the sequence of Fourier coefficients of a continuous 2π-periodic function F : R→ CN×N . Suppose that An is
an nN × nN positive definite matrix for all n ∈ N satisfying that {An} is stable and {An} ∼ {E

(
xn:1x∗n:1

)
}.

Let A−1
n = LnL∗n be the Cholesky decomposition of A−1

n for all n ∈ N. Then

lim
n→∞

1
2π

∫ 2π

0
‖P̂Ln(ω)− (F(ω))∗LΛ−1‖2

Fdω = 0 (11)

and ∥∥∥∥ 1
2π

∫ 2π

0
e−kωiP̂Ln(ω)dω− F∗−kLΛ−1

∥∥∥∥2

F
≤ 1

2π

∫ 2π

0

∥∥∥P̂Ln(ω)− (F(ω))∗LΛ−1

∥∥∥2

F
dω

for all n ∈ N and k ∈ {0, 1, . . . , n − 1}, where Λ−1 = LΛ−1 L∗Λ−1 is the Cholesky decomposition of Λ−1.
Moreover, if {xn} is of finite order there exist K1, K2 ∈ [0, ∞) such that√

1
2π

∫ 2π

0
‖P̂Ln(ω)− (F(ω))∗LΛ−1‖2

Fdω ≤ K1
‖An − E

(
xn:1x∗n:1

)
‖F√

n
+

K2√
n

∀n ∈ N.

Proof. Since An is positive definite matrix for all n ∈ N, A−1
n is positive definite matrix for all n ∈ N.

From ([12], Equation (20)) and ([5], Lemma 4.2) we have∥∥∥(E (xn:1x∗n:1))
−1
∥∥∥

2
= ‖Tn(F∗)Tn(Λ−1)Tn(F)‖2 ≤ ‖Tn(F∗)‖2‖Tn(Λ−1)‖2‖Tn(F)‖2
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= ‖(Tn(F))∗‖2‖Λ−1‖2‖Tn(F)‖2 = ‖Λ−1‖2‖Tn(F)‖2
2 ∀n ∈ N.

Hence, as {‖Tn(F)‖2} is bounded (see, e.g., ([5], Theorem 4.3) or ([9], Corollary 4.2)),{∥∥∥(E (xn:1x∗n:1
))−1

∥∥∥
2

}
is also bounded. Consequently, applying ([13], Lemma A1) and Equation (9) yields

{
A−1

n

}
∼
{
(E (xn:1x∗n:1))

−1
}
=
{

Tn (F∗LΛ−1) (Tn (F∗LΛ−1))
∗} .

As {‖An‖2} and {‖E
(

xn:1x∗n:1
)
‖2} are bounded, the sequences

{‖L−1
n ‖2} =

{√
λ1

((
L−1

n

)∗
L−1

n

)}
=

{√∥∥∥(L−1
n

)∗
L−1

n

∥∥∥
2

}
=

{√∥∥∥(LnL∗n)
−1
∥∥∥

2

}
=

{√
‖An‖2

}
and

{‖(Tn(F∗LΛ−1))−1‖2} =
{√∥∥∥(Tn(F∗LΛ−1)(Tn(F∗LΛ−1))∗)

−1
∥∥∥

2

}
=

{√∥∥E
(
xn:1x∗n:1

)∥∥
2

}
are also bounded. Thus, from Theorem 2 we have that {Ln} ∼ {Tn(F∗LΛ−1)} and that there exists
K ∈ [0, ∞) such that

‖Ln − Tn(F∗LΛ−1)‖F√
n

≤ K
‖A−1

n − Tn(F∗LΛ−1)(Tn(F∗LΛ−1))∗‖F√
n

= K
‖A−1

n −
(
E
(
xn:1x∗n:1

))−1 ‖F√
n

for all n ∈ N. Hence, applying Theorem 1 we conclude that Equation (11) holds.
Applying the Schwarz inequality (see, e.g., ([14], p. 139) yields∥∥∥∥ 1

2π

∫ 2π

0
e−kωiP̂Ln(ω)dω−F∗−kLΛ−1

∥∥∥∥
F
=

∥∥∥∥ 1
2π

∫ 2π

0
e−kωiP̂Ln(ω)dω− 1

2π

∫ 2π

0
e−kωi(F(ω))∗dωLΛ−1

∥∥∥∥
F

=
1

2π

∥∥∥∥∫ 2π

0
e−kωi

(
P̂Ln(ω)− (F(ω))∗LΛ−1

)
dω

∥∥∥∥
F

=
1

2π

√√√√ N

∑
r,s=1

∣∣∣∣∣
[∫ 2π

0
e−kωi

(
P̂Ln(ω)− (F(ω))∗LΛ−1

)
dω

]
r,s

∣∣∣∣∣
2

=
1

2π

√√√√ N

∑
r,s=1

∣∣∣∣∫ 2π

0
e−kωi

[
P̂Ln(ω)− (F(ω))∗LΛ−1

]
r,s

dω

∣∣∣∣2

≤ 1
2π

√√√√ N

∑
r,s=1

2π
∫ 2π

0

∣∣∣∣e−kωi
[

P̂Ln(ω)− (F(ω))∗LΛ−1

]
r,s

∣∣∣∣2 dω

=

√√√√ 1
2π

∫ 2π

0

N

∑
r,s=1

∣∣e−kωi
∣∣2 ∣∣∣∣[P̂Ln(ω)− (F(ω))∗LΛ−1

]
r,s

∣∣∣∣2 dω

=

√√√√ 1
2π

∫ 2π

0

N

∑
r,s=1

∣∣∣∣[P̂Ln(ω)− (F(ω))∗LΛ−1

]
r,s

∣∣∣∣2 dω

=

√
1

2π

∫ 2π

0

∥∥∥P̂Ln(ω)− (F(ω))∗LΛ−1

∥∥∥2

F
dω

for all n ∈ N and k ∈ Z.
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Moreover, if {xn} is of finite order from Theorem 1 there exists K2 ∈ [0, ∞) such that√
1

2π

∫ 2π

0
‖P̂Ln(ω)− (F(ω))∗LΛ−1‖2

Fdω

≤ ‖Ln − Tn(F∗LΛ−1)‖F√
n

+
K2√

n

≤ K
‖A−1

n −
(
E
(

xn:1x∗n:1
))−1 ‖F√

n
+

K2√
n

= K
‖
(
E
(

xn:1x∗n:1
))−1 − A−1

n ‖F√
n

+
K2√

n

= K
‖
(
E
(

xn:1x∗n:1
))−1 (An − E

(
xn:1x∗n:1

))
A−1

n ‖F√
n

+
K2√

n

≤ K‖ (E (xn:1x∗n:1))
−1 ‖2

‖
(

An − E
(
xn:1x∗n:1

))
A−1

n ‖F√
n

+
K2√

n

≤ K‖ (E (xn:1x∗n:1))
−1 ‖2‖A−1

n ‖2
‖An − E

(
xn:1x∗n:1

)
‖F√

n
+

K2√
n

∀n ∈ N.

If we know An for certain n ∈ N, Theorem 3 provides an estimation of the block entry F∗−kLΛ−1 of
the matrix Tn (F∗LΛ−1) in Equation (10) given by

1
2π

∫ 2π

0
e−kωiP̂Ln(ω)dω

=
1

2π

∫ 2π

0
e−kωi

n

∑
h=1

χ [ 2π(h−1)
n , 2πh

n

)(ω)[(Vn ⊗ IN)
∗Ln(Vn ⊗ IN)]h,hdω

=
1

2π

n

∑
h=1

∫ 2π

0
χ [ 2π(h−1)

n , 2πh
n

)(ω)e−kωidω[(Vn ⊗ IN)
∗Ln(Vn ⊗ IN)]h,h

=
1

2π

n

∑
h=1

∫ 2πh
n

2π(h−1)
n

e−kωidω[(Vn ⊗ IN)
∗Ln(Vn ⊗ IN)]h,h

=

{ 1
n ∑n

h=1[(Vn ⊗ IN)
∗Ln(Vn ⊗ IN)]h,h if k = 0,

i
2πk ∑n

h=1

(
e−k 2πh

n i − e−k 2π(h−1)
n i

)
[(Vn ⊗ IN)

∗Ln(Vn ⊗ IN)]h,h if k ∈ {1, . . . , n− 1}.

Therefore, if we know An for certain n ∈ N, Theorem 3 allows us to estimate Λ and the parameters
F−1, . . . ,F1−n of the VAR process as follows

Λ̂(n) =
((

1
2π

∫ 2π

0
P̂Ln(ω)dω

)(
1

2π

∫ 2π

0
P̂Ln(ω)dω

)∗)−1

and

F̂−k(n) =

((
1

2π

∫ 2π

0
e−kωiP̂Ln(ω)dω

)(
1

2π

∫ 2π

0
P̂Ln(ω)dω

)−1
)∗

∀k ∈ {1, . . . , n− 1}.
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Example 1. We consider the zero-mean 2-dimensional VAR(1) process {xn} in ([15], Example 2.3), where

Λ =

(
4 1
1 2

)

and

F−1 =

(
−0.8 −0.7
0.4 −0.6

)
.

Figure 1 shows the squared error made when Λ and F−1 are estimated from the perturbed VAR(1) process
whose sequence of correlation matrices is

{An} =
{

E (xn:1x∗n:1) +

(
02n−2×2n−2 02n−2×2

02×2n−2 I2

)}
.

Observe that this perturbed process has been generated by corrupting the VAR(1) process in ([15],
Example 2.3) by an impulse at n = 1.

0 10 20 30 40 50
0

0.5

1

1.5

2

Figure 1. Squared error made when Λ and F−1 are estimated by Λ̂(n) and F̂−1(n), respectively.

4.2. Parameter Estimation Method for Perturbed VMA Processes

We begin by reviewing the concept of VMA process.

Definition 2. A zero-mean random N-dimensional vector process {xn} is said to be a VMA process if

xn = wn +
n−1

∑
k=1

Gkwn−k ∀n ∈ N, (12)

where Gk ∈ CN×N for all k ∈ N, and {wn} is a zero-mean random N-dimensional vector process whose
sequence of correlation matrices is given by {E

(
w1:nw∗1:n

)
} = {Tn(Λ)} with Λ being an N × N positive

definite matrix and

w1:n =

w1
...

wn

 ∀n ∈ N.

If there exists q ∈ N such that Gk = 0N×N for all k > q, then {xn} is called a VMA process of (finite)
order q or a VMA(q) process.
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Let {xn} be as in Definition 2. Assume that {Gk}k∈Z, with G0 = IN and G−k = 0N×N for all
k ∈ N, is the sequence of Fourier coefficients of a continuous 2π-periodic function G : R → CN×N .
Since Equation (12) can be rewritten as

xn =
(
Gn−1 · · · G1 IN

)
w1:n ∀n ∈ N,

we have

x1:n =


IN 0N×N 0N×N · · · 0N×N
G1 IN 0N×N · · · 0N×N
G2 G1 IN · · · 0N×N
...

...
...

. . .
...

Gn−1 Gn−2 Gn−3 · · · IN

w1:n = Tn(G)w1:n ∀n ∈ N,

and consequently,

{E (x1:nx∗1:n)} = {E (Tn(G)w1:nw∗1:n(Tn(G))∗)}
= {Tn(G)E (w1:nw∗1:n) (Tn(G))∗} = {Tn(G)Tn(Λ)(Tn(G))∗}. (13)

If Λ = LΛL∗Λ is the Cholesky decomposition of Λ, then

E (x1:nx∗1:n) = Tn (GLΛ) (Tn (GLΛ))
∗ (14)

is the Cholesky decomposition of the positive definite matrix E
(
x1:nx∗1:n

)
for all n ∈ N, because

E (x1:nx∗1:n) = Tn(G)Tn(LΛL∗Λ)(Tn(G))∗ = Tn(G)Tn(LΛ)Tn(L∗Λ)(Tn(G))∗

= Tn(GLΛ)(Tn(LΛ))
∗(Tn(G))∗ = Tn(GLΛ)(Tn(G)Tn(LΛ))

∗ ∀n ∈ N.

Observe that if we know the correlation matrix E
(
x1:nx∗1:n

)
for certain n ∈ N, then its Cholesky

decomposition provides Λ and the parameters G1, . . . ,Gn−1 of the VMA process, since

Tn (GLΛ) =


LΛ 0N×N 0N×N · · · 0N×N

G1LΛ LΛ 0N×N · · · 0N×N
G2LΛ G1LΛ LΛ · · · 0N×N

...
...

...
. . .

...
Gn−1LΛ Gn−2LΛ Gn−3LΛ · · · LΛ

 . (15)

However, in practice what we usually know is a perturbed version {An} of the sequence of
correlation matrices {E

(
x1:nx∗1:n

)
} of the process. The following theorem allows us to estimate Λ and

the parameters {Gk}k∈N of the VMA process from the Cholesky decomposition of the matrices of the
sequence {An}, when {An} ∼ {E

(
x1:nx∗1:n

)
}.

Theorem 4. Let {xn} be as in Definition 2. Assume that {Gk}k∈Z, with G0 = IN and G−k = 0N×N for
all k ∈ N, is the sequence of Fourier coefficients of a continuous 2π-periodic function G : R → CN×N .
Suppose that An is an nN × nN positive definite matrix for all n ∈ N satisfying that {An} is stable and
{An} ∼ {E

(
x1:nx∗1:n

)
}. Let An = LnL∗n be the Cholesky decomposition of An for all n ∈ N. If {E

(
x1:nx∗1:n

)
}

is stable then

lim
n→∞

1
2π

∫ 2π

0
‖P̂Ln(ω)− G(ω)LΛ‖2

Fdω = 0, (16)

and ∥∥∥∥ 1
2π

∫ 2π

0
e−kωiP̂Ln(ω)dω− GkLΛ

∥∥∥∥2

F
≤ 1

2π

∫ 2π

0

∥∥∥P̂Ln(ω)− G(ω)LΛ

∥∥∥2

F
dω
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for all n ∈ N and k ∈ {0, 1, . . . , n− 1}, where Λ = LΛL∗Λ is the Cholesky decomposition of Λ. Moreover,
if {xn} is of finite order there exist K1, K2 ∈ [0, ∞) such that√

1
2π

∫ 2π

0
‖P̂Ln(ω)− G(ω)LΛ‖2

Fdω ≤ K1
‖An − E

(
x1:nx∗1:n

)
‖F√

n
+

K2√
n

∀n ∈ N.

Proof. From Equation (14) we have {An} ∼ {E
(
x1:nx∗1:n

)
} = {Tn (GLΛ) (Tn (GLΛ))

∗}. As {‖A−1
n ‖2}

and {‖
(
E
(

x1:nx∗1:n
))−1 ‖2} are bounded, the sequences

{‖L−1
n ‖2} =

{√
λ1

((
L−1

n

)∗
L−1

n

)}
=

{√∥∥∥(L−1
n

)∗
L−1

n

∥∥∥
2

}
=

{√∥∥∥(LnL∗n)
−1
∥∥∥

2

}
=

{√∥∥∥A−1
n

∥∥∥
2

}
and

{‖(Tn(GLΛ))
−1‖2} =

{√∥∥∥(Tn(GLΛ)(Tn(GLΛ))∗)
−1
∥∥∥

2

}
=

{√∥∥∥(E (x1:nx∗1:n
))−1

∥∥∥
2

}
are also bounded. Consequently, from Theorem 2 we have that {Ln} ∼ {Tn(GLΛ)} and that there
exists K1 ∈ [0, ∞) such that

‖Ln − Tn(GLΛ)‖F√
n

≤ K1
‖An − Tn(GLΛ)(Tn(GLΛ))

∗‖F√
n

= K1

∥∥An − E
(
x1:nx∗1:n

)∥∥
F√

n
∀n ∈ N.

Therefore, applying Theorem 1 we conclude that Equation (16) holds.
Applying the Schwarz inequality (see, e.g., ([14], p. 139)) yields∥∥∥∥ 1
2π

∫ 2π

0
e−kωiP̂Ln(ω)dω− GkLΛ

∥∥∥∥
F
=

∥∥∥∥ 1
2π

∫ 2π

0
e−kωiP̂Ln(ω)dω− 1

2π

∫ 2π

0
e−kωiG(ω)dωLΛ

∥∥∥∥
F

=
1

2π

∥∥∥∥∫ 2π

0
e−kωi

(
P̂Ln(ω)− G(ω)LΛ

)
dω

∥∥∥∥
F

=
1

2π

√√√√ N

∑
r,s=1

∣∣∣∣∣
[∫ 2π

0
e−kωi

(
P̂Ln(ω)− G(ω)LΛ

)
dω

]
r,s

∣∣∣∣∣
2

=
1

2π

√√√√ N

∑
r,s=1

∣∣∣∣∫ 2π

0
e−kωi

[
P̂Ln(ω)− G(ω)LΛ

]
r,s

dω

∣∣∣∣2

≤ 1
2π

√√√√ N

∑
r,s=1

2π
∫ 2π

0

∣∣∣∣e−kωi
[

P̂Ln(ω)− G(ω)LΛ

]
r,s

∣∣∣∣2 dω

=

√√√√ 1
2π

∫ 2π

0

N

∑
r,s=1

∣∣e−kωi
∣∣2 ∣∣∣∣[P̂Ln(ω)− G(ω)LΛ

]
r,s

∣∣∣∣2 dω

=

√√√√ 1
2π

∫ 2π

0

N

∑
r,s=1

∣∣∣∣[P̂Ln(ω)− G(ω)LΛ

]
r,s

∣∣∣∣2 dω

=

√
1

2π

∫ 2π

0

∥∥∥P̂Ln(ω)− G(ω)LΛ

∥∥∥2

F
dω

for all n ∈ N and k ∈ Z.
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Moreover, if {xn} is of finite order from Theorem 1 there exists K2 ∈ [0, ∞) such that√
1

2π

∫ 2π

0
‖P̂Ln(ω)− G(ω)LΛ‖2

Fdω

≤ ‖Ln − Tn(GLΛ)‖F√
n

+
K2√

n
≤ K1

∥∥An − E
(
x1:nx∗1:n

)∥∥
F√

n
+

K2√
n

∀n ∈ N.

If we know An for certain n ∈ N, Theorem 4 provides an estimation of the block entry GkLΛ of
the matrix Tn (GLΛ) in Equation (15) given by

1
2π

∫ 2π

0
e−kωiP̂Ln(ω)dω

=

{ 1
n ∑n

h=1[(Vn ⊗ IN)
∗Ln(Vn ⊗ IN)]h,h if k = 0,

i
2πk ∑n

h=1

(
e−k 2πh

n i − e−k 2π(h−1)
n i

)
[(Vn ⊗ IN)

∗Ln(Vn ⊗ IN)]h,h if k ∈ {1, . . . , n− 1}.

Therefore, if we know An for certain n ∈ N, Theorem 4 allows us to estimate Λ and the parameters
G1, . . . ,Gn−1 of the VMA process as follows

Λ̂(n) =
(

1
2π

∫ 2π

0
P̂Ln(ω)dω

)(
1

2π

∫ 2π

0
P̂Ln(ω)dω

)∗
and

Ĝk(n) =
(

1
2π

∫ 2π

0
e−kωiP̂Ln(ω)dω

)(
1

2π

∫ 2π

0
P̂Ln(ω)dω

)−1

∀k ∈ {1, . . . , n− 1}.

Example 2. We consider the zero-mean 2-dimensional VMA(1) process {xn} in ([15], Example 2.1), where

Λ =

(
4 1
1 2

)

and

G1 =

(
−0.8 −0.7
0.4 −0.6

)
.

Figure 2 shows the squared error made when Λ and G1 are estimated from the perturbed VMA(1) process
whose sequence of correlation matrices is

{An} =
{

E (x1:nx∗1:n) +

(
I2 02×2n−2

02n−2×2 02n−2×2n−2

)}
.

Observe that this perturbed process has been generated by corrupting the VMA(1) process in ([15],
Example 2.1) by an impulse at n = 1.
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Figure 2. Squared error made when Λ and G1 are estimated by Λ̂(n) and Ĝ1(n), respectively.

In [2], the periodogram method for perturbed block Toeplitz matrices was applied in spectral
estimation. In Theorems 3 and 4, it has been also applied in parameter estimation for perturbed VAR
processes and in parameter estimation for perturbed VMA processes, respectively. We finish the paper
by showing that the periodogram method for perturbed block Toeplitz matrices can be applied in
a fourth statistical signal processing problem, namely, in MIMO channel identification with perturbed
additive WSS noise.

In [16], an asymptotic result on block Toeplitz matrices was applied in single-input multiple-output
(SIMO) channel identification. We finish the paper by showing that Theorem 4 can be applied in MIMO
channel identification when the number of channel inputs and the number of channel outputs are equal.

We consider a MIMO channel with a discrete-time causal infinite impulse response (IIR) filter and
additive noise. Thus, the channel output process {yn} is of the form

yn = xn + εn =
n−1

∑
k=0

Gkwn−k + εn ∀n ∈ N.

We assume that the filter tap Gk ∈ CN×N for all k ∈ N and G0 = IN . We also assume that
{Gk}k∈Z, with G−k = 0N×N for all k ∈ N, is the sequence of Fourier coefficients of a continuous
2π-periodic function G : R → CN×N . We consider that the input process {wn} is a zero-mean WSS
N-dimensional vector process with {E

(
w1:nw∗1:n

)
} = {Tn(Λ)}, where Λ is an N × N positive definite

matrix. We assume that the noise process {εn} is a zero-mean random N-dimensional vector process
satisfying that there exists a continuous 2π-periodic function Υ : R→ CN×N such that {E

(
ε1:nε∗1:n

)
} ∼

{Tn(Υ)}. We also assume that the noise process is uncorrelated with the input process.
Suppose that {E

(
x1:nx∗1:n

)
} is stable and {An} = {E

(
y1:ny∗1:n

)
− Tn(Υ)} is a stable sequence of

positive definite matrices. To show that Theorem 4 can be here applied, we only need to prove that
{An} ∼ {E

(
x1:nx∗1:n

)
}.

From Equation (13) we obtain

‖E (x1:nx∗1:n)‖2 = ‖Tn(G)Tn(Λ)(Tn(G))∗‖2 ≤ ‖Tn(G)‖2‖Tn(Λ)‖2‖(Tn(G))∗‖2 = ‖Λ‖2‖Tn(G)‖2
2

for all n ∈ N. Hence, as {‖Tn(G)‖2} is bounded (see, e.g., ([5], Theorem 4.3) or ([9], Corollary 4.2)),
{‖E

(
x1:nx∗1:n

)
‖2} is also bounded and {E

(
x1:nx∗1:n

)
} ∼ {E

(
x1:nx∗1:n

)
}. Since {‖ − Tn(Υ)‖2} =

{‖Tn(Υ)‖2} is bounded, {−Tn(Υ)} ∼ {−Tn(Υ)}, and consequently, applying ([5], Lemma 3.1) yields
{E
(
ε1:nε∗1:n

)
− Tn(Υ)} ∼ {0nN×nN}. Therefore, from ([5], Lemma 3.1) we conclude that

{An} = {E
(
(x1:n + ε1:n) (x1:n + ε1:n)

∗)− Tn(Υ)}
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= {E (x1:nx∗1:n) + E (x1:nε∗1:n) + E (ε1:nx∗1:n) + E (ε1:nε∗1:n)− Tn(Υ)}
= {E (x1:nx∗1:n) + E (x1:n) E (ε1:n)

∗ + E (ε1:n) E (x1:n)
∗ + E (ε1:nε∗1:n)− Tn(Υ)}

= {E (x1:nx∗1:n) + E (ε1:nε∗1:n)− Tn(Υ)} ∼ {E (x1:nx∗1:n)}.

Thus, Theorem 4 can be applied in the considered MIMO channel identification problem, that is,
it can be used to identify Λ and the filter taps {Gk}k∈N.

5. Conclusions

In ([2], Theorem 4) the (averaged) periodogram method for positive semidefinite Toeplitz matrices
was generalized to perturbed block Toeplitz matrices. Moreover, ([2], Theorem 4) was there applied to
perturbed positive semidefinite block Toeplitz matrices to solve a statistical signal processing problem:
spectral estimation for perturbed WSS vector processes.

In the present paper, ([2], Theorem 4) (Theorem 1) has been applied to perturbed lower triangular
block Toeplitz matrices to solve three statistical signal processing problems: parameter estimation for
perturbed VAR processes, parameter estimation for perturbed VMA processes, and MIMO channel
identification with perturbed additive WSS noise. To solve those problems we have first generalized a
result given in [3] on the Cholesky decomposition of Toeplitz matrices to perturbed block Toeplitz matrices.

Author Contributions: Authors are listed in order of their degree of involvement in the work, with the most
active contributors listed first. J.G.-G. conceived the research question. All authors were involved in the research
and wrote the paper. They have also read and approved the published version of the manuscript.

Funding: This work was supported in part by the Basque Government through the research project “Advanced
distributed control for safety and energy efficiency of air transport (CODISAVA)” (KK-2018/00082).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gray, R.M. On the asymptotic eigenvalue distribution of Toeplitz matrices. IEEE Trans. Inf. Theory 1972,
IT-18, 725–730. [CrossRef]

2. Gutiérrez-Gutiérrez, J. A modified version of the Pisarenko method to estimate the power spectral density of
any asymptotically wide sense stationary vector process. Appl. Math. Comput. 2019, 362, 124526. [CrossRef]

3. Gray, R.M. Toeplitz and circulant matrices: A review. Found. Trends Commun. Inf. Theory 2006, 2, 155–239. [CrossRef]
4. Pisarenko, V.F. On the estimation of spectra by means of non-linear functions of the covariance matrix.

Geophys. J. R. Astron. Soc. 1972, 28, 511–531. [CrossRef]
5. Gutiérrez-Gutiérrez, J.; Crespo, P.M. Block Toeplitz matrices: Asymptotic results and applications.

Found. Trends Commun. Inf. Theory 2011, 8, 179–257. [CrossRef]
6. Serra, S. Asymptotic results on the spectra of block Toeplitz preconditioned matrices. SIAM J. Matrix

Anal. Appl. 1998, 20, 31–44. [CrossRef]
7. Miranda, M.; Tilli, P. Asymptotic spectra of Hermitian block Toeplitz matrices and preconditioning results.

SIAM J. Matrix Anal. Appl. 2000, 21, 867–881. [CrossRef]
8. Gutiérrez-Gutiérrez, J.; Crespo, P.M. Asymptotically equivalent sequences of matrices and Hermitian block

Toeplitz matrices with continuous symbols: Applications to MIMO systems. IEEE Trans. Inf. Theory 2008,
54, 5671–5680. [CrossRef]

9. Tilli, P. Singular values and eigenvalues of non-Hermitian block Toeplitz matrices. Linear Algebra Appl. 1998,
272, 59–89. [CrossRef]

10. Lancaster, P.; Tismenetsky, M. The Theory of Matrices; Academic Press: Cambridge, MA, USA, 1985.
11. Bernstein, D.S. Matrix Mathematics: Theory, Facts, and Formulas; Princeton University Press: Princeton, NJ,

USA, 2009.
12. Gutiérrez-Gutiérrez, J.; Crespo, P.M. Asymptotically equivalent sequences of matrices and multivariate

ARMA processes. IEEE Trans. Inf. Theory 2011, 57, 5444–5454. [CrossRef]
13. Gutiérrez-Gutiérrez, J.; Zárraga-Rodríguez, M.; Crespo, P.M.; Insausti, X. Rate distortion function of Gaussian

asymptotically WSS vector processes. Entropy 2018, 20, 719. [CrossRef]

http://dx.doi.org/10.1109/TIT.1972.1054924
http://dx.doi.org/10.1016/j.amc.2019.06.040
http://dx.doi.org/10.1561/0100000006
http://dx.doi.org/10.1111/j.1365-246X.1972.tb06146.x
http://dx.doi.org/10.1561/0100000066
http://dx.doi.org/10.1137/S0895479896310160
http://dx.doi.org/10.1137/S0895479896313036
http://dx.doi.org/10.1109/TIT.2008.2006401
http://dx.doi.org/10.1016/S0024-3795(97)00308-X
http://dx.doi.org/10.1109/TIT.2011.2159042
http://dx.doi.org/10.3390/e20090719


Mathematics 2020, 8, 582 15 of 15

14. Rudin, W. Principles of Mathematical Analysis; McGraw-Hill: New York, NY, USA, 1976.
15. Reinsel, G.C. Elements of Multivariate Time Series Analysis; Springer: Berlin, Germany, 1993.
16. Gazzah, H.; Regalia, P.A.; Delmas, J.P. Asymptotic eigenvalue distribution of block Toeplitz matrices and

application to blind SIMO channel identification. IEEE Trans. Inf. Theory 2001, 47, 1243–1251. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/18.915697
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Notation
	The Periodogram Method for Perturbed Block Toeplitz Matrices

	A Note on the Cholesky Decomposition of Perturbed Block Toeplitz Matrices
	Applications of the Periodogram Method in Parameter Estimation
	Parameter Estimation Method for Perturbed VAR Processes
	Parameter Estimation Method for Perturbed VMA Processes

	Conclusions
	References

