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The relative motion between human and exoskeleton is a crucial factor that has

remarkable consequences on the efficiency, reliability and safety of human-robot

interaction. Unfortunately, its quantitative assessment has been largely overlooked in

the literature. Here, we present a methodology that allows predicting the motion of

the human joints from the knowledge of the angular motion of the exoskeleton frame.

Our method combines a subject-specific skeletal model with a kinematic model of a

lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between

them. To calibrate the model and validate its ability to predict the relative motion in

a subject-specific way, we performed experiments on seven healthy subjects during

treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5◦ globally,

and around 1.5◦ at the hip level, which represent an improvement up to 66% compared

to the traditional approach assuming no relative motion between the user and the

exoskeleton.

Keywords: benchmarking, walking, wearable robot, rehabilitation, lower limb, skeletal modeling

INTRODUCTION

The quantitative assessment of robotic performance is a critical issue in rehabilitation
robotics (Torricelli et al., 2015b). The increasing number of wearable robots available in
the market has triggered the strong need for reliable methods to compare the existing
solutions on a common basis. In the field of lower limb exoskeletons, devices are usually
tested according to self-defined procedures and metrics that cannot be easily replicated
across different laboratories and/or users. The most relevant problems are related to the
intrinsic differences between devices, in terms of degrees of freedom, actuation principles,
mechanisms complexity, and materials, but are also due to the heterogeneous measurement
systems and protocols available worldwide. Besides this, the close interaction between the
user and the robot further challenges the assessment of robotic performance independently
from the user (Torricelli et al., 2015a). As a results, performance indicators normally rely
on global variables such as metabolic consumption (Mooney et al., 2014; Collins et al., 2015;
Galle et al., 2017), joint kinematics (Sawicki et al., 2006; Van Asseldonk et al., 2008), or
spatiotemporal parameters (Buesing et al., 2015; Arazpour et al., 2016). While these approaches
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are effective in grasping the overall behavior of a bipedal system,
they do not provide any clues on the internal mechanisms
that may be relevant to the global performance, e.g., human-
machine interaction (Torricelli et al., 2015a). In this respect, one
aspect that has been particularly disregarded in the literature
is the quantitative evaluation of human-machine kinematic
compatibility. A wearable robot is, by definition, a machine that
operates in constant physical contact with the human body,
supporting its movement by applying forces on the subject’s skin
(Pons, 2008). Due to kinematic, dynamic, and morphological
differences between the exoskeleton and the human body, a
relative motion between them always exists. This motion is
responsible for a number of disadvantages, such as energy losses
during power transmission, inaccurate control of the human
limbs, or discomfort and pain due to skin abrasion. During
mechatronic design, the understanding of these factors is key for
improving the device and its acceptance by the end user.

An accurate way to measure the relative motion between
subject and exoskeleton is by means of marker-based motion
capture (MOCAP) systems, which use reflective markers placed
on both the exoskeleton frame and the subject limbs (Alvarez
et al., 2017). This approach can produce very precise results,
but requires a time-consuming experimental procedure for
marker placement, post-processing, and fitting with human body
models. In addition, current marker-basedmodels are not usually
compatible with the presence of an exoskeleton, leading to the
need of custom-based protocols, which can be hardly replicated
across different systems.

Motivated by these observations, we formulated the following
question: “is it possible to predict human motion from
exoskeleton motion?.” A positive answer to it would support
the feasibility of estimating both exoskeleton and human
motion using only the exoskeleton sensors, overcoming most
of the aforementioned drawbacks. Being independent from any
external measurement system, this approach would also allow
measuring human-exoskeleton interaction in realistic outdoor
environments.

To address this research question, we propose a modeling-
experimental approach that combines personalized skeletal
models of human subject with a kinematic model of the
exoskeleton. We previously addressed a similar problem in the
context of exoskeletons for upper limb rehabilitation (Cortés
et al., 2014, 2016). In that work, we formulated and assessed a
computational method, denominated EIKPE (Extended Inverse
Kinematics Posture Estimation), to estimate the joint angles
of the human subject when the exoskeleton motion is known.
In the original version of the EIKPE, the human limb and
exoskeleton are modeled as a parallel kinematic chain in which
the exoskeleton’s cuff constraints impose motion constraints on
the human limb. Then, for a given pose of the exoskeleton, the
inverse kinematics (IK) of the parallel chain was computed to find
the joint angles of the subject limb during the training of single-
joint (e.g., elbow flexion) or compound motions (e.g., reaching
an object).

Here, we propose an extended version of the EIKPE, which
adds skeletal (SK) modeling in order to improve the subject-
specific prediction ability of human limb motion given the

absolute pose of the exoskeleton limb. To our best knowledge,
no similar approaches have been proposed in the literature.

MATERIALS AND METHODS

The process of creating, applying and estimating the accuracy of
the EIKPE entails the following five steps:

1. Capture of the Ground-Truth (GT) motion of the exoskeleton
and human during gait. This step generates the simultaneous
recording of a set of markers placed on human subjects and
exoskeleton during treadmill walking.

2. Skeletal model personalization. Based on recorded GTmotion
of human and exoskeleton, a generic skeletal model is scaled
to match the size of each test subject.

3. Human-Exoskeleton model generation. The personalized SK
model of each subject is connected with a kinematic model of
the exoskeleton and then the exoskeleton model link lengths
are adjusted.

4. Computation of the exoskeleton and human joint angles.
The GT joint angles of the human, vH(t), and exoskeleton,
vR(t), are calculated using the Human-Exoskeleton model
previously generated.

5. Application of the EIKPE constraints to the Human-
Exoskeleton model and assessment of its accuracy in
estimating human joint angles (ṽH(t)) given the GT joint
angles of the exoskeleton (vR(t)).

Ground-Truth Motion Recording
Seven healthy subjects (5 men, 2 women, age 29.7 ± 4.9)
participated in the study. The experiments were performed
in the Motion Analysis Laboratory of the Centro Superior
de Estudios Universitarios La Salle, Universidad Autónoma de
Madrid, Madrid, Spain. Subjects were asked to perform two
different recording sessions. In the first session, each subject was
asked to walk at 1 Km/h speed during 10 s. An additional trial
was required to measure the subject in a static upright standing
posture. In the second session, the subject repeated the previous
trials while wearing a lower limb exoskeleton. The exoskeleton
used in this experiment was the Exo-H2 (Technaid, Arganda del
Rey, Spain; Bortole et al., 2015). The Exo-H2 has 6 degrees of
freedom (DOFs), including hip, knee and ankle joints. Actuators
are connected to each other bymeans of an aluminum frame with
extensible plates that allow adjusting the inter-joint distance in
order to adapt to a specific subject size. In this experiment, the
exoskeleton was configured in “mechanically-transparent mode,”
i.e., with the motors physically decoupled from the joints. In this
configuration, the exoskeleton was unable to apply any assistive
or resistive force at the joint level. Several belts are used to attach
the exoskeleton to the subject.

Subject and exoskeleton motion were measured by using
a marker-based MOCAP system (BTS, Garbagnate Milanese,
Italy) composed of eight infrared cameras. All walking trials
were performed on a treadmill (LK6000 treadmill, BH fitness,
Spain). A 2 cubic meter volume was previously calibrated
to ensure accurate reconstruction of all markers during the
experiment. Prior to the first experimental session, the subject
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was instrumented with 12 reflective markers of 10mm diameter
placed on different anatomical landmarks (Figure 1): three
markers on the foot, placed on the calcaneus and on the fifth and
first metatarsals; one marker on the malleolous; three markers
on the shank; one marker on center-outside surface of the knee;
three markers on the thigh; one marker on the trochanter.

After the first session, and before donning the exoskeleton,
the markers on ankle, knee, and hip were removed, because
the exoskeleton structure would impede their view from
the cameras. The exoskeleton was equipped with five
markers placed in the center-outside surfaces of the knee,
ankle and hip motors, and in the midpoint of the shank
and thigh bars. Motion data were recorded at 100Hz and
processed offline to obtain the labeled 3D trajectories of all
markers.

Skeletal Model Personalization
We generated a personalized skeletal model for each of the
tested subjects by scaling a generic musculoskeletal lower limb
model [model Gait2392 included in OpenSim (Yamaguchi and
Zajac, 1989; Delp et al., 1990; Anderson and Pandy, 1999, 2001)],
which includes 19 DOFs. Although we used a musculoskeletal
model, in this work we refer to it as a skeletal model because
the muscular components of the model were not used for the
human kinematic estimation. The scaling and adjustment of
markers were performed by using the Scale Tool of OpenSim.
We have configured the Scale Tool to obtain the scaling factors
along the longitudinal axis of the femur using markers Mk11
and Mk7, for the tibia using markers Mk7 and Mk3, and
for the foot using markers Mk2 and Mk1 (Figure 1). For this
scaling stage, we used only the static captures of the subject
without the exoskeleton. Notice that with our marker protocol
we were only able to scale the right lower limb. The rest of
the model parts conserve the size of the original SK generic
model. The results of the scaling were visually inspected. If
the scaling was not coherent (e.g., the markers in the scaled
model appear to be too low or high with respect to the
segment they are attached to), then a manual scaling factor was
applied.

Human-Exoskeleton Model Generation
We modeled the fixation between the subject pelvis and
the exoskeleton corset as rigid, and adjusted their relative
translation such that the coordinates of the hip joint rotation
centers (left and right) of the human and exoskeleton match
along the anterior-posterior direction of the sagittal plane
(Figure 2). Then, we adjusted the length of the exoskeleton
links by using the static captures of the subjects wearing
the exoskeleton, such that the axes of rotation of the joints
of the hip, knee and ankle corresponded to the height
indicated by markers Mk11, Mk7, and Mk3 respectively. Finally,
the joint angles of the human hip (flexion, rotation, and
adduction), knee (flexion) and ankle (flexion) were adjusted,
using inverse kinematics, and manually revised, to match the
leg posture in the static capture of the subject wearing the
exoskeleton.

Computation of the Ground-Truth Joint
Angles
We computed the Ground-Truth (GT) joint angles of the human
and the exoskeleton by using the Inverse Kinematics (IK) Tool of
OpenSim (Figure 3). We have configured the IK tool to estimate
the angles of the hip, knee and ankle for both human and
exoskeleton and also the translations and rotations of the pelvis-
corset junction relative to the MOCAP coordinate system. We
assumed that, during the gait using the exoskeleton, the hip
rotation and ab-adduction angles are like those computed at the
static posture. This assumption is realistic since the exoskeleton
does not include neither adduction or rotation DOFs at the
hip level. To estimate the exoskeleton ankle plantar-dorsiflexion,
we created a new virtual marker (Mk14, see Figure 3) located
in the mid-point between markers Mk0 and Mk1. Then, the
exoskeleton ankle angle can be computed using IK from markers
Mk3 and Mk14.

The GT joint angles computed correspond to the rotation
around the Z axis of the joints. The neutral position of each
joint is defined as the position in which the Y axis of two
adjacent segments match. Figure 4 shows the definition of the
knee flexion-extension for the human and exoskeleton models,
as an example of the mentioned convention. The coordinate
systems of the human pelvis and exoskeleton corset are aligned
between them.

Human Joint Angles Estimation Using
EIKPE
Our method to estimate the joint angles of the human lower
limb during gait is based on a previous formulation of the EIKPE
method (Cortés et al., 2014, 2016). In the EIKPE, the human limb
and the exoskeleton are modeled as a single parallel kinematic
chain connected by the fixations of the exoskeleton (Figure 5,
left). For a given sequence of postures of the exoskeleton,
described by its vector of joint angles vR(t), the human sequence
of joint angles vH(t) is estimated.
Formally, the inputs to the problem are (Figure 5, right):

1) The human lower limb kinematic model, denoted by
H

(

LH , JH
)

[e.g., the Denavit-Hartenberg parameters
(Denavit, 1955)], where LH and JH correspond to sets of links
and joints. The lower limb kinematic model corresponds to
the personalized skeletal model obtained for each test subject.

2) The exoskeleton kinematic model, denoted by R
(

LR, JR
)

. The
values of exoskeleton joint angles vR are known at any instant
t of the gait cycle. The exoskeleton that we used in this work
(H2, Bortole et al., 2015), has 6 DOFs in total, all in the sagittal
plane.

3) A set of kinematic constraints, denoted C(vH(t), vR(t))
imposed by the human-exo fixations M, which are passive
mechanisms that connect the exoskeleton with the human
limbs. In this work, we consider the following set of
constraints:

a. A 6-DOF constraint between the human pelvis and the
exoskeleton corset.
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FIGURE 1 | Marker placement and labeling (written informed consent was obtained from the individual for the publication of this image).

FIGURE 2 | Schematic diagram of the Human-Exoskeleton model generation (left), and the resulting model scaled to one real test subject (right).

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2018 | Volume 12 | Article 18

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Torricelli et al. Modeling Human-Exoskeleton Motion

FIGURE 3 | Schematic diagram of the human and exoskeleton ground-truth joint angles estimation (left) and detail of the markers used for the estimation of the

human and exoskeleton ankle flexion (right).

FIGURE 4 | Definition of the knee flexion-extension angles for the human (θh)

and exoskeleton (θe) models.

b. A 2-DOF constraint between the tibia and its fixation
(point-on-line constraint).

c. Three 3-DoF constraints between the human foot and the
exoskeleton sole (point-to-point constraints).

The goal of the implemented algorithm is to find the
approximate angles of the joints of the patient limb ṽH(t), such
that the set of constraints C are met.

The application of the EIKPE to estimate vH(t) entails the
following steps (Figure 6):

I. Application of the set of subject-specific constraints C to the
Human-Exoskeleton model previously determined.

II. Application of the GT joint coordinates of the Exoskeleton in
instant ti (vR (ti)), i.e., flexion of the hip, knee, and ankle to the
Human-Exoskeleton model obtained in step I.

III. Estimation of the human flexion angles of the hip, knee and
ankle using the geometric constraint solver of OpenSim (Delp
et al., 2007) for instant ti ((ṽH(ti) ).

IV. Repetition of steps II and III for all instants ti belonging to the
GT dataset of the test subject.

Assessment of the Accuracy of EIKPE
Estimations
To assess the prediction performance, we compared the joint
profiles estimated by the EIKPE with the angle estimations
obtained by the GT angles from captured data. In order to
determine how the EIKPE compares to the traditional rigid
method, which assumes no misalignment between exoskeleton
and human joint axes and segments, we compared the joint
angles of the rigid method against those of the GT. The similarity
of the angle estimations provided by the EIKPE and the rigid
method against the GT has been assessed in terms of Root Mean
Squared Error (RMSE) and Range of Motion Error (ROME)
according to the following equations:

RMSE =

√

∑n
i=1

(

xi − yi
)2

n

ROME = [max (x) −min (x)]−
[

max
(

y
)

−min
(

y
)]

where x refers to the GT human joint angles and y are the joint
angles obtained by either the EIKPE or the rigid model estimator.
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FIGURE 5 | Schematic diagram of the human and exoskeleton kinematic models and their fixations (left) and Inputs and Outputs of the EIKPE (right).

FIGURE 6 | Schematic diagram of the human joint angles estimation using the EIKPE.

The RMSE captures errors related to differences in the shape
and offset of the estimations, whereas the ROME reflects the
accuracy in the estimation of the maximum amplitude of the
movement. This comparison has been performed on walking
data, whereas static data have been used only for model building
and calibration.

To check for statistical differences between the performance of
the rigidmodel and the EIKPE, we conducted aWilcoxon-Mann-
Whitney test, as an alternative to the t-test given the low numbers
of participants of this study. The test was applied on both metrics

(RMSE and ROME) for each joint, and the significance was set to
p= 0.05.

RESULTS

Figure 7 shows the results on human joint angle estimation from
one representative subject. The three profiles represent human
joint angles as obtained by GT captured data (in blue), the EIKPE
(in red), and the rigid model (in green). Results are given for hip,
knee and ankle DOF in the sagittal plane.
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FIGURE 7 | Ground-Truth (blue) and estimates (rigid model in green and the EIKPE in red) of the hip, knee, and ankle flexion-extension angles for representative gait

cycles of a test subject.

Table 1 reports the RMSE and ROME values from all the
test subjects. In addition, Figure 8 presents the box-plots of
the obtained values for the rigid model and the EIKPE across
subjects, for each of the estimated joint angles.

When compared to the rigid model, the EIKPE showed lower
errors with respect to the GT angles, in terms of both RMSE
and ROME. Regarding the RMSE metric, the improvements
produced by EIKPE vary between 27 and 44% while for the
ROME metric vary between 15 and 66%. In particular, the hip
flexion-extension showed the better estimation accuracy, with
mean errors lower than 2◦ and a dispersion of 0.7◦. For the
knee and ankle, the estimation errors increased, withmean values
below 3.5◦ for both metrics. The ankle estimations present the
larger dispersion for both metrics among the studied joints (up
to 2◦ for ROME metric). This is possibly due to cumulative
errors which are amplified at the end of the human kinematic
chain.

Concerning the estimations of the rigid model, the joint angle
that is better estimated is the hip flexion-extension, as occurred
with EIKPE, with mean errors around 2◦ and a dispersion near
1◦. As opposed to the results obtained by the EIKPE, the knee
angle presented the highest estimation errors. This result suggests
that the larger misalignment between the kinematic models of the
exoskeleton and human lower limb occurs at the level of the knee
during gait.

Table 2 presents the p-values obtained from the Wilcoxon-
Mann-Whitney test for RMSE and ROME. According to this
analysis, in terms of RMSE, the rigid model and the EIKPE result
statistically different (p < 0.05) only at the knee and ankle. In
contrast, in terms of the ROME, statistically relevant differences
are found only at the hip.

Figure 9 presents a qualitative comparison of the
reconstructed poses of the human lower limb, at the knee
level, during a particular phase of the gait cycle. The three figures
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TABLE 1 | Human joint angle estimation errors in terms of the ROME and RMSE

metrics (mean ± sd) provided by the rigid method and the EIKPE with respect to

the Ground-Truth angles.

Joint Metric Method Improvement*

(%)

Rigid Model EIKPE

Hip RMSE 2.2 ± 0.9 1.6 ± 0.7 27

ROME 2.9 ± 1.2 1.0 ± 0.7 66

Knee RMSE 4.1 ± 1.7 2.3 ± 0.7 44

ROME 4.2 ± 3.9 3.3 ± 2.1 22

Ankle RMSE 3.4 ± 1.5 2.2 ± 0.8 36

ROME 2.8 ± 1.6 2.4 ± 2.1 15

*Error reduction in the angle estimates provided by the EIKPE with respect to ones
provided by the rigid model.

TABLE 2 | Results of the Wilcoxon-Mann-Whitney test’s applied to the two

population of errors obtained by the EIKPE and the rigid model.

JOINT RMSE ROME

Hip 0.098 0.004*

Knee 0.004* 0.359

Ankle 0.012* 0.652

The asterisk indicates a p-value lower than 0.05.

correspond to the reconstruction using the GT joint angles (left),
the EIKPE (middle), and rigid model (right) respectively. It
can be observed how the rotation axes of the human (ZHuman

knee) and exoskeleton knee (ZExo knee) differ from each other in
the case of the GT data. With the rigid model, their directions
are parallel, recreating an idealized and inaccurate human—
exoskeleton relative pose. The EIKPE, on the contrary, is able to
reconstruct the direction of ZHuman knee close to those estimated
by the GT.

DISCUSSION

Measuring the relative motion between human and exoskeleton
is a challenging and increasingly relevant issue in wearable
robotics. A recent sensitivity analysis showed that inaccurate
joint angles estimates may led to inaccurate inverse dynamic
estimations up to 232% during gait (Riemer et al., 2008). These
sources of errors are particularly likely to happen in wearable
robotics applications, where it is generally assumed that the
exoskeleton and the human have negligible relative motion. This
can lead to wrong estimates about power and force transmissions
and therefore introduce important biases in the design of both
the mechatronic components and the control paradigms of
these devices. The EIKPE method here proposed showed an
improvement on the accuracy of human motion prediction in
the range of 15–66% over rigid model assumptions, leading to
accuracies below 3◦ (RMSE between 1.6–2.3◦). In the context of
gait analysis, these figures seem to be satisfactory, being close to
those obtained with other motion capture systems. For example,

the method in Seel et al. (2014), based on inertial sensors, reports
a RMSE between 1 and 3◦ for the ankle and knee flexion-
extension movements, in a scenario where no exoskeletons were
involved.

A major advantage of the EIKPE method is that no additional
sensors apart from those embedded in the exoskeleton are
required to obtain accurate estimations of the human joint
angle throughout the gait cycle. This has important practical
applications in clinical, industrial, and consumer domains,
because they allow quick measurements in out-of-the-lab
conditions. For instance, the EIKPE method can be used as a
benchmark of adaptability of the exoskeleton to specific sizes
of the subjects, either healthy or impaired, in the execution
of real tasks. Such information can be even obtained prior to
usability tests, and used to improve the design of the device,
achieving better ergonomics and more efficient transmission of
forces. In clinical diagnostic applications, such as during the
assessment of the increment of the voluntary range of motion, the
EIKPE method would enable the assessment of patient evolution
during robotic intervention, and not by pre-post comparison,
as currently done. The application of a method like the EIKPE
becomes indispensable if the objective is the estimation of
the inverse dynamics of the patient-exoskeleton system (e.g.,
voluntary torque applied by the patient to some joint) during the
therapy. In this respect, real-time predictions of these quantities
will be of invaluable help to those control strategies based
on timely prediction of user intention/contribution, producing
more effective assist-as-needed paradigms. Another advantage
of the proposed method is to rely on purely geometrical
algorithms. This means that the constraints between relative
positions/orientations of exoskeleton and subject limbs are valid
independently from the correct execution of walkingmovements.
Therefore, the method is expected to be robust to different motor
tasks or to the execution of abnormal movement patterns such as
those experience in clinical cases. However, these aspects are still
to be confirmed experimentally.

Themodel here proposed presents a number of simplifications
that need to be considered when assessing the generalization of
the results.

First, the personalization of our skeletal model is currently
based on scaling factors obtained from the lengths of femur,
tibia and foot of the subject. Therefore, the model is not able to
account to subject-specific deformities (e.g., those experienced by
cerebral palsy patients). In addition, this personalization process
is not fully automatic. The intervention of a human operator
is required to check and adjust, if necessary, the results of the
inverse kinematics (IK), after joining the human skeletal model
with the exoskeleton. If this initialization is poor, the EIKPE
will produce estimations that do not match the shape of the
angle vs. time curves of the GT, introducing a constant bias.
This issue is due to the unavoidable absence of markers on the
human hip, knee, and ankle joints when the subject is wearing
the exoskeleton.

The second limitation is related to the kinematic constraints
between the human and the exoskeleton. In the current
implementation, these constraints are constant over time and do
not account for the compliant behavior of soft biological tissues
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FIGURE 8 | Box plots of the RMSE and ROME metrics of the angle estimations provided by the rigid model (blue) and the EIKPE (orange).

FIGURE 9 | Reconstructed poses of the human lower limb at a particular phase of the gait cycle with the joint angles of the MOCAP (left), the EIKPE (middle), and

rigid model (right).

or other non-rigid exoskeletons components, such as braces.
These elements change their shapes under the effect of interaction
forces, e.g., during changes in walking speed or level of robot
assistance. In these cases, the relative movement between the
exoskeleton and the human may diverge from the one estimated
by the EIKPE.

The third limiting factor is represented by the limited sample
size of the experiment performed, which included seven healthy
people, and the motion considered, limited to treadmill walking.
Larger experimental studies with higher number of people,
including patients, and on different tasks are required to validate

the suitability of our methodology for industrial (e.g., human
capability enhancement) and clinical (e.g., neurorehabilitation)
applications.

The aforementioned considerations, while showing the limits
of our approach, also provide clear indications that, even
in presence of strong simplifications, modeling the relative
motion between the human and the robot produce significantly
better results than conventional “rigid” approaches. This, in
our opinion, represents important evidence that supports and
motivates the following next research steps in this complex
and emerging field: (a) the study the sensitivity of EIKPE
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to non-modeled dynamic behaviors, e.g., the elasticity of
exoskeleton braces or soft tissues, (b) the generation of
personalized musculoskeletal models from medical images (e.g.,
computerized tomography) to improve the prediction accuracy
in presence of bone deformities present in specific populations,
e.g., cerebral palsy, (c) the implementation of a real-time version
of the EIKPE with musculoskeletal models that can be used in
the control loop of the exoskeleton, (d) the inclusion and testing
of new predictive models of interaction forces, including models
of soft tissues and robotic compliant elements, (e) testing the
accuracy of the EIKPE across different type of motor tasks, e.g.,
slopes, sit-to-stand, rough terrains.

CONCLUSIONS

In this work, we presented a methodology, called EIKPE, that
allows to generate subject-specific skeletal models to quantify
the human-exoskeleton interaction at kinematic level. We have
implemented a version of the EIKPE for the lower limb with
the objective of testing whether such model allows to predict,
with sufficient precision, the human joint motion starting from
the knowledge of the exoskeleton motion. We have assessed, in
terms of the RMSE and ROME metrics, the estimation errors of
the EIKPE with respect to real motion of seven healthy subjects,
and compared them with a traditional rigid model that assumed
no relative motion between human and exoskeleton. Our results
suggest that EIKPE can be used to predict human motion from
exoskeleton motion, providing estimates close to the real joint
angles calculated from motion capture data. Compared to the
rigid model, the EIKPE demonstrated improvements in range
of 15–66% in the RMSE and ROME, depending on the joint
considered. This method has several potential applications in

real scenarios, e.g., assessing of the adaptability of a particular
exoskeleton to specific subjects, monitoring the human-machine
interaction in real-time, or improving assist-as-needed control
strategies.
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