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a b s t r a c t 

Background and objective: Neurodegenerative diseases like Parkinson’s disease often take several years 

before they can be diagnosed reliably based on clinical grounds. Imaging techniques such as MRI are 

used to detect anatomical (structural) pathological changes. However, these kinds of changes are usu- 

ally seen only late in the development. The measurement of functional brain activity by means of 

[ 18 F]fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information, but its 

interpretation is more difficult. The scaled sub-profile model principal component analysis (SSM/PCA) was 

shown to provide more useful information than other statistical techniques. Our objective is to improve 

the performance further by combining SSM/PCA and prototype-based generalized matrix learning vector 

quantization (GMLVQ). 

Methods: We apply a combination of SSM/PCA and GMLVQ as a classifier. In order to demonstrate the 

combination’s validity, we analyze FDG-PET data of Parkinson’s disease (PD) patients collected at three 

different neuroimaging centers in Europe. We determine the diagnostic performance by performing a ten 

times repeated ten fold cross validation. Additionally, discriminant visualizations of the data are included. 

The prototypes and relevance of GMLVQ are transformed back to the original voxel space by exploiting 

the linearity of SSM/PCA. The resulting prototypes and relevance profiles have then been assessed by 

three neurologists. 

Results: One important finding is that discriminative visualization can help to identify disease-related 

properties as well as differences which are due to center-specific factors. Secondly, the neurologist as- 

sessed the interpretability of the method and confirmed that prototypes are similar to known activity 

profiles of PD patients. 

Conclusion: We have shown that the presented combination of SSM/PCA and GMLVQ can provide useful 

means to assess and better understand characteristic differences in FDG-PET data from PD patients and 

HCs. Based on the assessments by medical experts and the results of our computational analysis we 

conclude that the first steps towards a diagnostic support system have been taken successfully. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Neurodegenerative diseases are often life-threatening. Besides

lowering life expectancy, they impact the patients in ways that

are life-changing for both the patients and their families. The

two disorders far most prevalent are Parkinson’s Disease (PD) and

Alzheimer Disease (AD) [1,2] . Affecting approximately four and

seven million people in Europe, respectively [3,4] . 

These two diseases together with a number of other less fre-

quent similar conditions usually develop very slowly, often tak-

ing several years before they become diagnostically clear. The ini-

tial complaints of the patients and the clinical findings are often

unclear or not severe enough to differentiate between the differ-

ent diseases. This includes findings from neurocognitive examina-

tions, neuroimaging scans using CT or MRI and other tests. The

commonly used scans in clinical practice are performed in or-

der to demonstrate or exclude anatomical (structural) pathologi-

cal changes. If these structural changes are present indeed, those

scans fulfill their role well. However, pathological anatomical brain

changes are usually seen only late in the development of the disor-

ders. Functional brain alterations as a result of slowly progressing

brain diseases are more difficult to obtain and their interpretation

is for clinicians often not possible or is much less reliable than

structural lesions. A thorough clinical evaluation combined with

imaging techniques, able to provide patterns of neuronal dysfunc-

tion which are specific to a particular disease, might become an

indispensable approach to assist the accurate diagnosis and choice

of appropriate treatment [5] . 

Currently, there is still a need to classify patients as early as

possible. On the one hand the patients and family themselves wish

to be informed about what is happening to them. This is especially

important for the number of subjects who present with clinical

alarm signs but do not develop brain degeneration and recover. On

the other hand, the management of these brain diseases differ, de-

pending on which disease will be most likely. Furthermore, there

is a growing need to select patients at early or very early stages to

be able to test experimental therapies. For that purpose one does

not need a large group of subjects, but a highly specific group of

patients. Experimental therapies will not be easily allowed on peo-

ple if their diagnosis is uncertain and if a very large study group

is required to determine a useful effect. In addition, clinical studies

with large patient groups are difficult to handle and can be ex-

tremely costly. These negative hurdles could be avoided by meth-

ods with high specificity and sensitivity that allows to recruit on

short notice a small group of patients for whom the therapy is

justified. Lastly, there is a need of a method which can quantify

the severity of the brain pathology directly from the cerebral tis-

sue measurement by which progression or regression can be mea-

sured without being dependent solely on the subjective wellbe-

ing of the patient. For this and similar purposes, machine learning

methods have become increasingly popular within the health care

domain. However, many of them are black box methods which are

not transparent in how they work. Moreover, as illustrated above

and discussed in literature [6,7] , medical decision makers expect a

diagnostic model to provide intuition by pointing to similar cases

and explaining its decision process. Transparent or white box al-

gorithms such as decision trees [8] exist. However, when working

with complex high dimensional features these are not necessarily

intuitive [8,9] . 

The method presented in this paper aims to fulfill the char-

acteristics mentioned above by combining properties of the

scaled sub-profile model principal component analysis (SSM/PCA)

[10,11] with those of generalized matrix learning vector quantiza-

tion (GMLVQ) [12] . We show how this combination allows us to

construct post-hoc visualizations of the data and the model by com-

bining the linearity of the PCA transformation with the prototypes
nd relevance matrix GMLVQ constructs during training. First, a

iscriminative visualization that allows to discover differences or

imilarities between scans in an understandable number of dimen-

ions ( Section 2.3.1 ). Second, a visualization of the internal repre-

entations (prototypes) of GMVLQ and its relevance matrix in the

riginal voxel space ( Section 3.2 ), helping domain experts to in-

erpret the inner workings of the automated diagnostic process. In

rder for a model to be justifiable it needs to be in line with ex-

sting domain knowledge [13] . To validate the presented approach,

e look at data from healthy controls (HC) and PD patients col-

ected at three different neuroimaging centers of which the differ-

nces are known, see Section 2.4 for more details considering the

ata. 

The SSM/PCA is a data driven spatial covariance method de-

igned to reduce the high dimensional voxel data in a much

maller set of covariance patterns of which the expression scores

an be computed on any functional brain data from the same

maging modality [14,15] . In our case the data was collected us-

ng [ 18 F]-fluoro-deoxyglucose positron emission tomography (FDG-

ET). Previous studies have shown the reproducibility and stability

f the PD related (covariance) patterns (PDRP) based on FDG-PET

16,17] . In our work, we deviate from the traditional way of con-

tructing and applying these patterns, see Section 2.1 . 

The distance and prototype based GMLVQ employs a full rele-

ance matrix in the distance metric and is thereby able to account

or correlations of dimensions and rotations of the feature space.

12] . Previous work has demonstrated GMLVQ’s superior or at least

ompetitive performance to that of support vector machines and

ecision trees in similar diagnostic problems relating Parkinso-

ian syndromes and SSM/PCA [18,19] . Furthermore, the method has

hown competitive performance and provided useful insights due

o analysis of its relevance matrix in a multitude of other biomed-

cal applications [20–24] . A brief review of GMLVQ is included in

ection 2.2 

The paper is structured following the classical machine learning

ipeline. The methods and materials section introduces the the-

ry, interpretation, and mathematics behind, what can be consid-

red, the pre-processing and feature generation method SSM/PCA

 Section 2.1 ), highlighting the difference with the traditional way

f applying SSM/PCA. Section 2.2 provides a review of GMLVQ fol-

owed by Section 2.3 in which we discuss the intuitive combina-

ion of GMLVQ and SSM/PCA, resulting in the voxel representa-

ions of the prototypes and relevance matrix. To show this is not

urely a theoretical exercise we validate the method by applying

t to data from HC and PD patients described in Section 2.4 . The

isualizations are evaluated by three neurologists, the results and

 discussion are presented in Section 3 . The paper is concluded in

ection 4 . 

. Methods and materials 

Here we provide the background information, relevant math-

matical formalism and notation, as well as some intuition be-

ind SSM/PCA and GMLVQ in Sections 2.1 and 2.2 . This back-

round is required for the combination of the two, presented in

ection 2.3 . Furthermore we introduce the practical application of

ur approach and include a description of the dataset at hand in

ection 2.4 . 

.1. Scaled sub-profile model/PCA 

The scaled sub-profile model (SSM) [10,11] , is a spatial covari-

nce method based on principal component analysis (PCA). In con-

rast to structural data from, e.g., magnetic resonance imaging,

SM/PCA is applied to metabolic activity, i.e., functional data from

DG-PET. 
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A fundamental property of the brain lies at the basis of the

rocedure. The brain uses only glucose as the source of the cel-

ular energy which the nerve cells in the brain need to perform

nd maintain their function. Glucose in the brain is metabolized

sing oxygen and by this metabolic process energy rich biolog-

cal substances are produced which are then available for nerve

nd other cells in the brain. If for any reason the nerve cells are

ost or are diseased they need less biological energy and thus con-

ume less glucose. The overall glucose consumption in any par-

icular brain region reflects therefore directly the locally averaged

unctional state of the brain. These glucose use changes may be

ubtle but significant and often cannot be seen visually. Due to the

rain’s high degree of connectivity and fixed neuronal interconnec-

ions between thousands of regions a ǣpattern ǥ of altered glucose

se may arise. It is assumed that each neurodegenerative brain dis-

ase expresses itself in specific patterns of regional metabolic co-

ariation [10,11] . 

In order to detect the glucose uptake in the brain FDG-PET

canning uses the radiotracer FDG (fluoro-deoxy-glucose). This glu-

ose variant behaves like native glucose but can be radiolabeled

ith the physiological positron emitting radio-isotope [ 18 F]. The

ET camera registers the accumulation of the radio-isotope every-

here in the brain and obtains a total ǣfootprint ǥ of the nervous

issue condition resulting in metabolic activity data per voxel. 

The SSM is able to characterize the regional covariance struc-

ures by pre-processing of the measured voxel values, i.e., by work-

ng with the subject residual profiles (SRP) [25] . After determin-

ng the SRPs a PCA is applied to identify the metabolic covari-

nce patterns, also known as the group invariant sub-profiles (GIS).

he GIS are determined on the data from what we call the space

efining reference group . This group contains both healthy controls

nd a disease specific patient subgroup, e.g., Parkinson’s disease

atients in our case ( Section 2.4 ). Furthermore, one can calculate

he subjects’ expression scores of the obtained GIS patterns for un-

een patients. The amount that each of the GIS contribute to a

ubject’s cerebral metabolic rate is quantified by the expression

cores which vary from subject to subject. This variability in sub-

ect scores has been shown to have high discriminative power in a

umber of cases [26–29] . A detailed theoretical description of the

SM/PCA can be found in [10,11] . The following subsections review

he relevant computational steps involved, following a similar pro-

ess described in [15] . 

.1.1. Spatial preprocessing 

Starting with raw FDG-PET volumes we first normalize the data

o the Montreal Neurological Institute (MNI) common space, such

hat there is a direct correspondence between voxel coordinates.

ext, the volumes are masked in order to remove, low-values,

oise-related artifacts, and the areas not involving brain activity

e.g., the eyes). Initially, a set of individual masks are created by

omputing per volume the maximum value and marking, in the

ask of that volume, each voxel above 35% of this maximum with

 one and every other voxel with zero. These individual masks are

hen multiplicatively combined to create one common mask that

ill include only non-zero values for all subjects. 

.1.2. Subject residual profiles 

To compute the subject residual profiles (SRP), each volume is

eshaped into a one-dimensional vector ( m × 1) and concatenated

o form a matrix with each row representing a subject. The data

s logarithmically transformed and thereafter each subject is cen-

ered with its respective mean value. By centering logarithmically

ransformed data, subject global scaling effects are reduced. These

ffects may be caused by, e.g., differences in dosage or measuring

arameters [15] . Finally, the subject residual profiles are the re-

ult of column (voxel) centering the data by subtracting the group
ean profile (GMP), i.e., the mean voxel values computed over the

ealthy controls. As a consequence, the sign of the SRP values in-

icate if a subject has a higher (positive) or lower (negative) ac-

ivity value with respect to the healthy controls’ average. Alterna-

ively, one could choose to use the entire group including the PD

atients instead, but then the interpretation of the SRP values de-

end on the more heterogeneous PD group’s attributes, decreasing

nterpretability. 

.1.3. Group invariant sub-profiles 

The group invariant sub-profiles (GIS) are given by the eigen-

alue decomposition of the SRP’s voxel by voxel covariance matrix.

he GIS correspond to the orthonormal eigenvectors obtained from

his procedure. The details of how to perform such a PCA are de-

cribed and discussed in [15,25] . The GIS ( m × n ) are computed

n the space defining reference group which limits the number of

IS patterns to the number of subjects ( n ) included in this group,

ith the size of the patterns equal to the number of voxels ( m )

hat are left after applying the mask. Traditionally, the different

IS patterns are combined into a single disease related pattern, we

efer the interested reader to [15,30] for examples on how to do

his. However, in contrast to the traditional way of using SSM/PCA

e do not combine any GIS patterns beforehand. Instead, we use

ll non-zero eigenvalue GIS to compute the subject scores that

erve as input to the learning vector quantization (LVQ) system

 Section 2.2 ) and let the model decide which scores or combina-

ion of scores best discriminate the different classes of data. 

.1.4. Subject scores 

The forward application of SSM/PCA, also known as the topo-

raphic profile rating [31] provides the subject scores of an unseen

ubject. The same mask as calculated for the space defining refer-

nce group has to be used to ensure the selection of the same co-

rdinates in the novel volumes. The SRP of the new subject is then

omputed using the steps described above, with the only differ-

nce being that the GMP is the one of the space defining reference

roup. A vector of subject scores ( ξ) of size n × 1 quantifies the

mount that each of the GIS patterns contributes to the subject’s

erebral metabolic rate. It is computed as: 

= G 

� r, (1) 

here G a m × n matrix containing the GIS patterns of the

pace defining reference group and r is the subject residual pro-

le ( m × 1) of a subject. Here, � is the transpose operator. As the

atrix G is an orthonormal matrix, multiplying by the transpose of

he GIS matrix can be used to approximately reverse the operation

nd get back the SRP: 

 = G ξ (2) 

he transformation in Eq. (2) is especially important, as it enables

he visualization described in Section 2.3.2 . 

.2. Learning vector quantization 

Learning vector quantization (LVQ) [32] is a family of machine

earning algorithms that attempt to find typical patterns (proto-

ypes) that represent the different labels in the data, i.e., the dif-

erent groups of patients and healthy controls. The prototypes are

onstructed during the training phase based on the available sam-

les. During this phase the model is presented with a patient’s ex-

ression scores as described in Section 2.1.4 . The prototypes are

pdated by pushing the closest correct prototype towards the con-

idered patient’s scores and the closest wrong prototype away from

he considered patient’s scores. After training, an unseen patient’s

ata are classified by computing the distance, for instance the

quared Euclidean distance, between the patient’s scores and the
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prototypical scores. The label of the new patient is then deter-

mined using the nearest prototype classification (NPC) scheme, i.e.,

it is assigned the label of the closest prototype. 

2.2.1. Generalized matrix LVQ 

Generalized matrix learning vector quantization (GMLVQ), in-

troduced by Schneider et al. [12] , is an extension to the cost func-

tion of the GLVQ algorithm [33] and the idea of incorporating rel-

evance factors into the distance measure [34] . GMLVQ employs a

full and adaptive matrix in the distance measure which is, together

with the prototypes, optimized during training. The adaptive dis-

tance is denoted mathematically by: 

d �
(
w , ξ

)
= 

(
ξ − w 

)� 
�

(
ξ − w 

)
, (3)

where w is a prototype of size n × 1 and � = �� � is a sym-

metric positive semidefinite n × n matrix, with n the number of

features. The values of the matrix ( Ω) are updated in such a way

that the distance from the closest correct prototype is decreased

and the distance from the closest wrong prototype becomes larger

[12] . Furthermore, by weighting every pair of features, GMLVQ is

able to account for correlations of dimensions by implicit scaling

and rotation of the data, resulting in a more robust performance

[12,21] . Initial prototypes are generally set to be equal to the class

conditional mean with small random offset. Initially, the matrix Ω
is set equal to the identity matrix in order to not introduce any

bias towards any of the dimensions. The updates of prototypes and

relevance matrix are given by gradient descent optimization of an

appropriate cost function, see [12] for details. During this proce-

dure the algorithm is presented with the training data for a num-

ber of epochs until the model converges. Here, we consider the

cost function introduced in [33] : 

S = 

N ∑ 

i =1 

f [ μΛ(ξi )] , (4)

with μΛ(ξi ) being the relative distance function and the monoton-

ically increasing function f (x ) = x . The relative distance function, 

μΛ(ξi ) = 

d Λ(ξi , w L ) − d Λ(ξi , w K ) 

d Λ( ξi , w L ) + d Λ(ξi , w K ) 
, (5)

is a is a bounded quantity in the range [ −1 , 1] . A negative value in-

dicates a correct classification, as d Λ(ξi , w L ) denotes the distance

between the closest prototype with the same label ( w L ) as the pre-

sented example ( ξi ). Consequently, a positive value means an in-

correct classification as w K denotes the closest prototype with a

different label. 

The eigenvectors of Λ provide the directions in which the data

from different classes are well separated, while keeping the pro-

totypes close to the data they represent. This property can be

leveraged by projecting the data in feature space onto the lead-

ing eigenvectors of Λ enabling the user to view a discriminative

low-dimensional representation of the data, see Section 2.3.1 . This

is similar in spirit to methods such as Linear Discriminant Analysis

(LDA) [35] , see [36] for a comparison of the concepts. 

2.3. Visualization 

In this section we discuss the two techniques that combine

properties of SSM/PCA and GMLVQ in order to expand our under-

standing of the data. In particular, the visualizations can be used

to more easily find similar or dissimilar patients ( Section 2.3.1 ) or

to visualize the inner representations that the GMLVQ model holds

of the data ( Section 2.3.2 ). 
.3.1. Discriminative visualization 

Using the following technique we can get a low dimensional

iscriminative visualization of the data which can be used, e.g., to

dentify outliers and or find similar patients. It is important to note

hat “similar” is defined within the context of the data and the

lassification task and refers to patients that show similar activity

atterns. 

The adaptive matrix Ω as discussed in Section 2.2.1 , can be

nterpreted as a linear transformation of the data and the proto-

ypes. However, given a specific matrix Λ, the corresponding Ω
s not necessarily uniquely defined. Intuitively, the distance mea-

ure is invariant under reflections or rotations so many solutions

ay exist. The found solution will depend on the initialization and

he randomized order by which GMLVQ learns from the examples

36] . However, we can define a canonical, unique solution 

ˆ Ω with

he eigenvalue decomposition of Λ. Thereby, we determine the or-

honormal eigenvectors e 1 , e 2 , . . . , e M 

of Λ, corresponding to the M

rdered non-zero eigenvalues l 1 ≥ l 2 ≥ · · · ≥ l M 

and define ˆ Ω as: 

ˆ = 

[ √ 

l 1 e 1 , 
√ 

l 2 e 2 , · · · , 
√ 

l M 

e M 

] � 
. (6)

t has been shown analytically [36] and observed empirically that

he GMLVQ approach has a strong tendency to yield singular ma-

rices Λ of very low rank [12,36–38] , so the number of non-zero

igenvalues will be small. Furthermore, because Λ is symmetrical

he eigenvectors can be orthonormalized. Intuitively, the eigenvec-

ors correspond to linearly independent sources causing the label

ependent variance in the data, with the corresponding eigenval-

es indicating the magnitude of this effect. For the remainder of

his paper ˆ Ω refers to the orthonormal eigenvectors of Λ. The

ethod described here is applied after training. However, variants

f LVQ exist that explicitly control the rank of the matrix during

raining [37] . 

.3.2. Voxel space representation 

We present here the technique that can be used to visualize the

nternal representation the GMLVQ model creates during the train-

ng phase. It is possible to look at and explain the different covari-

nce patterns in voxel space, i.e., when the expression score for a

pecific pattern increases the activation in the positively weighted

oxels regions increases as well, whereas activation in the nega-

ively valued regions decreases [30] . However, in practice compar-

ng the expression of multiple covariance patterns of a new scan

ith that of the prototypes is non-trivial. It would be easier if the

rototypes would be in the same representation as the new scan.

n the Section 2.2.1 we described that GMLVQ produces a proto-

ype for each of the different classes in the data. By combining the

wo concepts, on one side the prototypes as representative values

f a class and on the other side the relation ( Eq. (2) ) between the

ubject scores (feature space) and the subject residual profiles, it is

ossible to construct the prototypical subject residual profiles ˜ w in

oxel space: 

˜ 
 = G w, (7)

ith w the prototype as trained in feature space and G the GIS

atrix. 

Similarly, the relevance matrix can be visualized [24] . As the

IS matrix G 

� is a linear mapping of the high dimensional resid-

al profiles (voxel space) to the lower dimensional subject scores,

e can rewrite the distance measure in feature space of the form

q. (3) as: 

( x − ˜ w ) 
� 

G �G 

� ( x − ˜ w ) , (8)

ith x the SRP. Hence, even though training and classification is

ormulated in feature space, we can compute the relevance matrix

n voxel space ˜ � = G �G 

� . However, the visualization of the whole
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Table 1 

General features of the space defining reference group. 

UMCG 

HC (n = 17) PD (n = 19) 

Age, mean(std) in years 61.3(7.5) 63.8(7.5) 

Male gender, n(%) 12(70.6) 13(68.4) 

Disease evolution, mean(std) in years - 3(2) 
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atrix is not sensible. Therefore, we consider the diagonal of Λ
nly, which can be used as a summary of the relevance of the fea-

ures or in voxel space the most relevant areas to consider for the

lassification task. 

.4. Datasets 

In this setion we introduce the data used to test our

ethods. We consider a set of brain images acquired using

 

18 F]fluorodeoxyglucose positron emission tomography (FDG-PET) 

rom both healthy controls (HC) and Parkinson’s patients (PD). The

ata have been collected at three different centers: the Movement

isorder Unit of the Clinica Universidad de Navarra (CUN) [39] , the

niversity Medical Center Groningen (UMCG) [16] , and the Univer-

ity of Genoa and IRCCS AOU San Martino-IST (UGOSM) [40] . A

ourth disjoint group, see Table 1 , of healthy controls and Parkin-

on’s patients from the UMCG is included as our space defining

eference group, as discussed in Section 2.1 . The details of the dif-

erent study setups can be found in the respective publications.

owever, in Table 2 some relevant features of the participating

ubjects are provided for convenience. Observe from the data in

able 2 that the PD patients from the three centers are in differ-

nt stages of the disease evolution. The subjects from the UGOSM

re at an early stage of PD. In contrast, the patients from the CUN

re in a much later stage of the disease. Finally, the group of pa-

ients from the UMCG are at a slightly later stage than the patients

rom the UGOSM, resulting in a diverse group of patients with re-

pect to disease evolution. Previously published works show that

SM/PCA created PDRPs can capture differences with the progres-

ion of Parkinson’s disease [41] as correlates with clinical symp-

oms and treatments [42,43] . The healthy controls from UGOSM

nd CUN are relatively similar with respect to age. In contrast, the

MCG healthy group contains a more varied collection of relatively

oung individuals compared to the other two centers. In the cen-

ers, different scanners, setting, and scanning protocols are used

16,39,40] which has previously been observed to have a negative 

ffect on the performance of GMLVQ trying to build a universally

center independent) applicable model [19] . In Table 1 the infor-

ation of the space defining reference group is included. This is

he group on which the GIS and GMP are calculated and therefore

efine the space the subject scores are calculated in and the mod-

ls are trained in. 

. Results and discussion 

In order to be able to assess about the usefulness of the visu-

lizations it is relevant to know how well the model performs, as

he performance of the model is essential for gaining trust [6] . 
Table 2 

General features of the different groups. 

UMCG 

HC (n = 19) PD (n = 20) 

Age, mean(std) in years 56(14) 63(9) 

Male gender, n(%) 9(47.4) - 

Disease evolution, mean(std) in years - 3(2) 
We trained GMLVQ to distinguish between the healthy controls

nd Parkinson’s patients using the data of each center individually

s well as on all data together, see Table 3 . The problem where the

ata of all centers is taken together has been labeled and trained

n two ways. In the “2-class” setting the source of the data is not

aken into account and the model has been trained to distinguish

etween HCs and PD patients. For the “6-class” problem we la-

eled every HC and PD patient in combination with the center of

rigin, resulting in six classes. However, the performance reported

or the 6-class problem is that of the binary problem, i.e., how well

he model distinguishes between PD patients and HC. Table 3 re-

orts the mean and standard deviation of a ten times repeated

andomized ten fold cross validation. To create a balanced dataset,

nderrepresented classes were oversampled by including copies of

andomly selected patients in the training set. By balancing the

raining sets we decrease the bias in performance indicators, but in

ddition this increases the representativeness of the prototypes as

he prototypes of underrepresented classes are not pushed away by

ther over represented groups. This is especially important for the

nterpretations of the voxel space representations of the prototypes

nd relevance matrix ( Section 3.2 ). Balancing is furthermore justi-

ed because in the dataset the availability of data for Parkinson’s

isease does not represent the a priori possibility of a person hav-

ng the disease. The prototype locations and relevance matrix were

ound by eight epochs of stochastic gradient descent optimization

sing the GMLVQ toolbox that can be found at [44] , with the ini-

ial relevance matrix the identity matrix to not introduce any bias

owards any of the GIS patterns and the prototypes (one per class)

nitialized on the class conditional means with a small random off-

et. All other parameters were set to the provided default values. 

The results in Table 3 a show the model is better at distinguish-

ng between PD patients and HCs using the data from CUN and

MCG than it is at separating the patients from the UGOSM. This

s likely explained by the observation that the patients of the three

enters are at different stages of the disease, with the patients

rom UGOSM at the very beginning of the disease, UMCG at an

arly stage, and CUN at a very late stage. Furthermore, we assume

omogeneous healthy controls, even though they are not necessar-

ly healthy in an absolute sense, they do not have a neurodegener-

tive or any other brain disease. 

In the performance results of the individual centers we see

n average performance with relatively high standard deviation,

hich means that the performance depends heavily on which part

f the data the algorithm is presented with during training. The

ariability of the AUC (area under the ROC curve) decreases when

e consider the data of all the centers together as compared to

ata from single centers. Even though the standard deviation is

till relatively high for the other metrics they can possibly be made

ore consistent between cross validation runs by introducing a

ias towards one of the classes and shifting away from the NPC

cheme along the ROC curve. Considering the 2-class problem, we

o not know which source of variation GMLVQ is using to distin-

uish between the PD patients and HCs. It is possible that the

odel uses center dependent effects resulting in prototypes not

escribing a clean difference between HC and PD. This could be

armful for the interpretation of the prototypes and relevance ma-

rix. For this reason, we also looked at the 6-class problem. Forcing
UGOSM CUN 

HC (n = 49) PD (n = 38) HC (n = 20) PD (n = 68) 

67.8(11.6) 72(6.8) 67.9(3.1) 70.6(6.4) 

16(32.7) 24(63.2) 11(55) 37(54.4) 

- 1.7(1.6) - 13.6(5.1) 
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Table 3 

Classification performance of HCs versus PD patients of the five different classification problems. Results of ten times 

repeated ten fold cross validation. Mean values with standard deviation within brackets. PPV and NPV are the positive 

and negative predictive values respectively. AUC is the area under the ROC curve. 

Center(s) All Individual 

2-class 6-class UMCG UGOSM CUN 

Accuracy (%) 83(7) 81(8) 87(16) 71(14) 86(11) 

AUC 0.89(0.07) 0.81(0.09) 0.96(0.12) 0.79(0.14) 0.89(0.16) 

Sensitivity (%) 86(8) 81(9) 82(29) 69(20) 88(12) 

Specificity (%) 78(13) 81(15) 92(20) 75(22) 81(31) 

PPV (%) 88(7) 89(8) 94(14) 80(14) 95(8) 

NPV (%) 77(12) 71(11) 88(18) 69(16) 70(28) 

(a) Performance of the approach, as described in the previous sections, when using all the GIS to generate the 

subjects’ scores 

Center(s) All Individual 

2-class 6-class UMCG UGOSM CUN 

Accuracy (%) 74(9) 72(9) 83(18) 68(14) 70(15) 

AUC 0.82(0.10) 0.31(0.09) 0.92(0.15) 0.76(0.16) 0.77(0.23) 

Sensitivity (%) 74(12) 71(13) 77(29) 66(19) 71(15) 

Specificity (%) 73(16) 75(16) 90(21) 70(22) 69(35) 

PPV (%) 84(8) 84(9) 92(16) 76(17) 90(11) 

NPV (%) 63(13) 61(12) 82(21) 62(18) 41(24) 

(b) Performance of the approach when using the first GIS only to generate a single score per subject. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Relevance profiles, i.e., the diagonal component of the relevance matrix Λii 

( y -axis) of (a) the 2-class (b) the 6-class problems. The values are the average value 
GMLVQ to separate the centers in combination with the diagnos-

tic labels could help find prototypes that more clearly describe the

difference. The performance measure considered for evaluating the

system trained in the 6-class setting still refers to the problem of

discriminating between PD patients and HCs. 

Previous studies have shown that that the first GIS alone tends

to describe the difference between PD and HCs [29] . One of the

reasons to not reduce the number of GIS beforehand was in or-

der to improve the reconstruction performance of the method de-

scribed in Section 3.2 , as more information would be available. Fur-

thermore, one of the strengths of GMLVQ comes from the inclu-

sion of the relevance matrix that is optimized to weigh the (rel-

evance of) features and their combinations. Additionally, the rel-

evance matrix enables to construct a discriminative visualization

as described in Section 2.3.1 . The relevance profiles of the 2-class

and 6-class have been included in Fig. 1 and the profiles for the

other centers can be found in Appendix B. To see how our ap-

proach performs when using the first GIS only we have run the

same experiments on the same data, but with generating only a

single score (feature) per subject using the first GIS of the space

defining reference group. The results are included in Table 3 b. The

GIS are ordered by variance accounted for (VAF) which have been

included in Appendix A, where the first GIS accounts for almost

18% of the variance. Note that GMLVQ reduces to a simple one

dimensional threshold classifier for 2-class problems. The perfor-

mance in Table 3 show a decrease in performance when using the

first GIS. However, it does not drop far, which does indicate that

the first GIS has high discriminative power with respect to HCs

and PD patients. Especially the lower drop in performance of the

UGOSM and UMCG compared to that of CUN might indicate that

later signs of PD could be contained within different GIS. This is

furthermore supported by the relevance profile of CUN (Fig. B.8),

as this set contains only very late stage PD patients ( Table 2 ), and

shows that the first GIS is not the most relevant for the discrimi-

nation. 

The relevance profiles of the 2-class and 6-class problem have

been included in Fig. 1 . The profile of the 2-class problem shows

that the first GIS is the most relevant one, but clearly the other GIS

carry relevant information that facilitates increased performance of

the classifier. The relevance profile of the 6-class problem tells a

similar story with the exception that the 35th GIS is the most rel-

evant. Based on the previous findings this suggests that the first

found during the randomized ten times repeated ten fold cross validation, with the 

error bars the standard deviation. 
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Fig. 2. Projection of the subject scores from all available centers and prototypes (depicted larger and with black border) onto the first two leading eigenvectors of the 

relevance matrix Λ, scaled by the square root of their eigenvalues (columns of ˆ Ω) for two different problem setting. (a) Labeling considering health status only. Eigenvalues 

for ˆ Ω1 and ˆ Ω2 are 1 and 0 respectively, reducing the 2D plot to a one dimensional one. (b) Labeling health status in combination with center of origin. Eigenvalues for ˆ Ω1 

and ˆ Ω2 are 0.5331 and 0.2517 respectively. 
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IS is mostly related to the difference between PD and HC. In par-

icular, the 35th GIS appears to comprise information relevant for

he discrimination of the centers. 

.1. Discriminative visualization 

This section presents the results and discussion of the visualiza-

ion from Section 2.3.1 that provides a technique to visualize the

igh dimensional voxel data in a scatter plot. Furthermore, it can

elp to understand what the model has learned. 
In Fig. 2 a we have included the two-dimensional discriminative

lot of the 2-class ( Fig. 2 a) and 6-class problem ( Fig. 2 b). These

lots were created using the method described in Section 2.3.1 af-

er a single training run on all available data of GMLVQ following

he same procedure and with the same hyperparameters as for the

odels in Table 3 . Therefore, the space of the presented models is

epresentative of a model with the same expected performance of

istinguishing between PD and HC as can be found in Table 3 . The

lotted points represent single patient’s subject scores from the

raining data projected onto the corresponding problems first two
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Fig. 3. The GMLVQ model of the 2-class problem projected back into voxel space: (a) The found prototypical SRPs (prototypes) of the two considered classes, with values 

relative to the healthy controls of the space defining reference group. (b) The diagonal of the relevance matrix, indicating relevant areas for discrimination between the two 

classes. Note that the prototypes are represented by the colors which are projected on the mni152 template [45,46] . 
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columns of ˆ Ω . The prototypes are depicted larger and with a black

and thicker border. Additionally, in Fig. 2 b the decision boundaries

are drawn between prototypes when using the NPC scheme. It is

important to realize that the second eigenvector in Fig. 2 a has been

included for aesthetic reasons and will not count in the calculation

of the distance as it’s eigenvalue is close to zero, and therefore is

unimportant for the classification. Similarly, it is possible in Fig. 2 b

that some points might seem to be misclassified but in fact are not

due to the third non-zero eigenvalued eigenvector ( ˆ Ω3 ) not visible

in the plot. 

Looking at the projection in Fig. 2 a we can see a relatively clear

separation between the two classes, as expected considering the

performance in Table 3 for the 2-class problem. With an eigen-

value of approximately one the only relevant axis is ˆ Ω1 , which

thus describes the difference between the classes. As we believe

a center dependent effect exist [19] , we suspect that the direction

of ˆ Ω1 might not contain the difference between HC and PD sub-

jects only, but might also use the difference between centers to

distinguish between HCs and PD patients. 

In Fig. 2 b we have included the projection of the 6-class prob-

lem. The idea of the 6-class setting is to construct more represen-

tative prototypes by considering the center of origin of the data

during training. The performance will not necessarily be better by

doing so, as the model will try to separate the different centers

and therefore will not be able to use any center dependent differ-

ence to distinguish between HC and PD. The plot in Fig. 2 b con-

firms the existence of a center specific effect as all classes are sep-

arable, an effect that cannot be explained by difference in PD co-

horts only ( Table 2 ) under the assumptions that HC cohorts are

homogeneous. 

Considering the projection of the data on 

ˆ Ω2 , we would find

clusters on a line mostly describing the difference between centers
s HCs and PD patients from the same center would fall mostly

ithin the same segment. Interestingly, the first eigenvector ( ˆ Ω1 )

till describes most of the difference between the HCs and PD pa-

ients, comparing to Fig. 2 a and considering every center sepa-

ately. At a first glance one might conclude that the PD patient

lusters arrange from left to right corresponding with the disease

volution progression of the different cohorts, see Table 2 . How-

ver, comparing HCs and PD subjects of each center we see that

he HCs clusters shift together with the PD clusters indicating that

he direction does not contain an effect explained only by the dif-

erence in PD disease progression. Under the assumption that the

ealthy controls generally do not differ, it is likely some of the cen-

er specific differences are included in this direction. If we would

nd a clean direction without any center specific differences we

ould be able, besides distinguishing between HC and PD, to com-

ute a severity score along this direction indicating the progression

f PD. 

.2. Voxel representation 

For the validation of the interpretability of the prototypes and

elevance matrices, we look at the five different classification prob-

ems as introduced in the beginning of Section 3 and perform the

ransformation described in Section 2.3.2 to obtain a prototypical

esidual profile and relevance profile in the original voxel space.

his gives us fourteen prototypes and five relevance profiles. 

Each of the prototypes and relevance profiles are presented to

hree medical specialists in the follow way: (i) In order to deter-

ine if the prototypes show activity patterns and areas of inter-

st that compare to the knowledge of experts, we show the con-

tructed images without providing any information about them,

.e., no knowledge about the considered disease, centers, and train-
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Fig. 4. The GMLVQ model of the 6-class problem projected back into voxel space: (a) The found prototypical SRPs (prototypes) of the six considered classes, with values 

relative to the healthy controls of the space defining reference group. (b) The diagonal of the relevance matrix, indicating relevant areas for discrimination between the six 

classes. Note that the prototypes are represented by the colors which are projected on the mni152 template [45,46] . 
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ng settings. Furthermore, they are asked to describe what they see

nd possibly give a diagnosis. After this the classes are revealed to

he experts, i.e., the general class of PD patient or healthy control,

o specifics about the cohort’s average disease evolution, age or

ender. By including the prototypes trained on the data of multi-

le centers we try to see if this has any negative effects on the

epresentativeness of the prototypes. (ii) In a second round, now
hat the classes are known, a number of prototypes that have sig-

ificant differences in disease evolution are shown in pairs to see

f this difference is captured by the prototypes. Initially without

onveying this information to the assessors. By doing so, we hope

hey find a noticeable difference between prototypes representing

ifferent stages of the same disease, and without bias are able to

ell which prototypes represent a further progressed patient. (iii)
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Finally, the relevance profiles are presented to the assessors to see

if the important areas according to LVQ are similar to the ones tra-

ditionally considered to be important by the domain experts. 

The medical specialists observed, in the prototypes in

Figs. 3 and 4 , an increased metabolism in the globus pallidus

and putamen, thalamus, cerebellum, pons, and sensorimotor cor-

tex and relative decreases in the lateral frontal and parietooccipital

areas, which are similar activities to the to the previously found

PD-related patterns (PDRP) in literature [26] . Although exact dif-

ference in network activity between patients at different disease

evolution stages are not known we do know that the expression of

the PDRP does correlate with clinically observable symptoms and

different stages of the disease [41,42] . We see similar signs in the

prototypes shown in Fig. 2 b, the patterns of activity do not change.

However, there is an increase of the activity in the relevant areas

for patients from CUN, of which the patients are much further in

the disease evolution, compared to the patients from the UMCG

and UGOSM. 

Comparing the visual representations in Fig. 4 it can be seen

that there are differences between the prototypical distributions

of the subject residual profiles. In the CUN and the UMC group

the parieto-occipital regions show clear reductions in metabolic

activity but this less so in the UGOSM group. This could be due

to the differences of group compositions. The UGOSM group in-

cluded many more subjects with rather short disease durations.

This might suggest that PD patients who have been diseased for

a longer period of time do show more pathology. The parieto-

occipital region is suggested to be involved in Parkinsonian sub-

jects who develop cognitive deficits or even dementia. However,

this study was not designed to investigate the involvement of the

regional changes in relation to the clinical signs and thus conclu-

sions in this respect are not warranted. 

It is important to note here that hard conclusions are difficult

to make because of the presence of the variability between centers

as well as between HC and PD. Interestingly, within this setting

the relevance profiles Fig. 2 a and b do still capture similar areas of

importance as indicated by the medical specialists, with a higher

relevance or discriminative power given to the basal ganglia, tha-

lamus, oxipital cortex, and motor cortex. 

4. Conclusion 

We have shown that the techniques presented in this paper

can be used to improve the interpretability of the GMLVQ model

in combination with SSM/PCA and in the context of the diagno-

sis of Parkinson’s disease. The low-dimensional visualization of the

subjects opens up the potential to project unseen subjects onto a

low-dimensional plot. Moreover, this can help visualize potential

issues with the data, such as multiple sources of variation which

can not all be contributed to the difference in pathology. Most

importantly, the voxel representation of the model makes it pos-

sible to follow the decision process of GMLVQ by looking at im-

ages medical experts are more familiar with. Additionally, we have

shown that very similar to previous work the first GIS are consid-

ered most relevant by GMLVQ, but do not provide the same level

of performance compared to using all GIS as relevant information

is present in later GIS as well. Future studies looking at the rel-

evance profiles of GMLVQ might prove insightful with respect to

which GISs would most likely capture certain sources of variance,

either the variance due to disease evolution stage or difference due

to protocols or processing materials. 

By looking at a relatively well understood disease, i.e., PD, we

have shown that the model can produce prototypical activity pro-

files capturing the pathological differences between subjects. The

goal is to use our approach on other datasets including multiple

pathologies that are clinically relevant and more difficult to dis-
inguish. The various diseases which are accompanied by clinical

arkinsonism may thus be separated on a consistent pathophysi-

logical basis. Not including any other sources of variability. An-

ther possible application would be to project an unseen disease

roup such as idiopathic REM sleep behavior disorder (RBD), which

s considered a pre-stage of PD, into the eigenvectors of a model

rained to distinguish between HC and PD subjects. Potentially, this

an provide some insight into the difference between RBD patients

hat will and which will not develop Parkinson’s disease. 
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