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Abstract: Tuberculosis continues to be a public health problem in the world, and drug resistance has
been a major obstacle in its treatment. Quinoxaline 1,4-di-N-oxide has been proposed as a scaffold
to design new drugs to combat this disease. To examine the efficacy of this compound, this study
evaluates methyl, ethyl, isopropyl, and n-propyl esters of quinoxaline 1,4-di-N-oxide derivatives
in vitro against Mycobacterium tuberculosis (pansusceptible and monoresistant strains). Additionally,
the inhibitory effect of esters of quinoxaline 1,4-di-N-oxide on M. tuberculosis gyrase supercoiling
was examined, and a stability analysis by ultra performance liquid chromatography-tandem
mass spectrometry (UPLC-MS) was also carried out. Results showed that eight compounds
(T-007, T-018, T-011, T-069, T-070, T-072, T-085 and T-088) had an activity similar to that of the
reference drug isoniazid (minimum inhibitory concentration (MIC) = 0.12 µg/mL) with an effect
on nonreplicative cells and drug monoresistant strains. Structural activity relationship analysis
showed that the steric effect of an ester group at 7-position is key to enhancing its biological effects.
Additionally, T-069 showed a high stability after 24 h in human plasma at 37 ◦C.
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1. Introduction

According to the World Health Organization (WHO), tuberculosis (TB) continues to be one of the
leading infectious diseases in the world [1]. First- and second-line drugs are available for the treatment
of the disease. However, the present therapy has been ineffective due to its long duration, as well as
the emergence of resistance to these drugs [2]. In view of the significance of TB as an infectious disease
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and the increasing incidence of resistant strains, the development of new drugs for the treatment of TB
is urgently needed.

Quinoxalines are a series of compounds with diverse biological activities that have what is
considered a privileged structure [3]. Carta and collaborators proposed quinoxaline 1,4-di-N-oxide
as a scaffold for the development of new antituberculosis drugs [4]. In particular, Monge’s research
group reported a series of quinoxaline 1,4-di-N-oxide derivatives with excellent antituberculosis
activity in resistant and multiresistant strains of Mycobacterium tuberculosis (M. tuberculosis) as well as
nonreplicative cells in in vitro and in vivo models [5,6]. Interestingly, the change of the 2-carbonitrile
by the 2-carboxylate group increased the solubility of the compounds and their biological activity [7].
Analysis of the structure-activity relationship (SAR) of quinoxaline 1,4-di-N-oxide derivatives clearly
indicates that at 2- and 7-position on the quinoxaline ring, carboxylate and electro-attracting
groups (halogen atoms), respectively, are preferred. Also, a methyl group at 3-position is a good
option for antitubercular activity [8]. Additionally, quinoxaline 1,4-di-N-oxide derivatives have
an effect against nonreplicating persistent (NRP) bacteria [9]. A study by Pan et al. showed that
quinoxaline 1,4-di-N-oxide derivatives have a potent antitubercular activity (minimum inhibitory
concentration (MIC) < 0.4 µg/mL) and null cytotoxicity on Vero cell lines [10]. However, in general,
quinoxaline 1,4-di-N-oxide derivatives show solubility problems. In line with the development of new,
more effective, and less toxic antituberculosis agents, our research group in this work propose the
incorporation of an ester group (methyl, ethyl, isopropyl, and n-propyl) at 7-position on the quinoxaline
1,4-di-N-oxide ring as a strategy to enhance the solubility and biological activity of these derivatives.

Additionally, it has been reported that quinoxaline 1,4-di-N-oxide derivatives have a novel
mechanism of action unrelated to current antitubercular drugs [11]. A proposed mechanism of
action indicates that antimicrobial quinoxalines prevent the synthesis of RNA by binding to the
CpG site on DNA [12]. However, a study examining compounds derived from 2,3-dichloroquinoxaline
has indicated that they may be inhibitors of the enzyme chorismate mutase [13]. In addition to
the mechanisms of action described, Radwan et al. have determined that quinoxaline 1,4-dioxide
derivatives are capable of interacting on the active site of DNA gyrase of M. tuberculosis [14].
Therefore, in this study, a inhibitory analysis of esters of quinoxaline 1,4-di-N-oxide derivatives
on M. tuberculosis gyrase supercoiling was done to understand their potential mechanism of action.
Finally, a chromatographic analysis to test plasma stability of esters of quinoxaline 1,4-d-N-oxide was
also carried out.

2. Results and Discussion

2.1. Biological Activity

A common procedure to obtain quinoxaline 1,4-di-N-oxide derivatives is the use of benzofuroxane
N-oxide as a principal reagent [15]. Additionally, benzofuroxane N-oxide is a heterocyclic compound
with antitubercular activity [16]. Therefore, as a first step, benzofuroxane-N-oxide derivatives
were used to obtain esters of quinoxaline 1,4-di-N-oxide, which were also evaluated in vitro on
M. tuberculosis strain H37Rv and the NRP strain. Results are shown in Table 1. SAR analysis showed
that the compound T-046 with a hydrogen atom at R1 position on the benzofuroxane N-oxide ring
had a lower MIC value (58.5 µg/mL). However, when a carboxylate group was added at R1-position,
the biological activity was enhanced sevenfold (compound T-014, MIC = 7.6 µg/mL). This effect
increased when a carboxylate group with an aliphatic linear substituent was incorporated at the same
position on the benzofuroxane N-oxide ring (T-074, MIC = 0.87 µg/mL). These results confirm that the
steric effect at R1-position modulates anti-M. tuberculosis activity. Additionally, a second substitution
at R2-position drastically reduced the activity (T-036, MIC >100 µg/mL). These results show that the
benzofuroxane-5-carboxylate N-oxide ring is a good scaffold to develop new antitubercular agents.
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Table 1. Biological activity of benzofuroxane N-oxide derivatives using the microplate Alamar blue
assay (MABA) against Mycobacterium tuberculosis strain H37Rv and the low oxygen recovery assay
(LORA) against the nonreplicating persistent strain.
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Code R1 R2 MABA MIC (µg/mL) LORA MIC (µg/mL)

T-014 CH3OOC H 7.6 12.98
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Following on our main objective (esters of quinoxaline 1-4-di-N-oxide derivatives), 18 compounds
of methyl and ethyl ester derivatives were evaluated on M. tuberculosis strain H37Rv. Results are
shown in Table 2. All compounds of the methyl ester series showed good anti-M. tuberculosis
activity (MIC < 0.35 µg/mL). SAR analysis of the methyl series, showed that compounds with
a carboxylate (methyl and ethyl) group at R1-position and a methyl group at R2-position had high
activity (MIC < 0.5 µg/mL). However, acetyl, benzoyl, and arylcarboxamide groups at R1-position
decreased the effect. On the other hand, quinoxaline 1,4-di-N-oxide derivatives with a trifluoromethyl
group at R2-position also showed good anti-M. tuberculosis activity (MIC < 2.0 µg/mL) in spite of
the presence of a carbonyl group with aliphatic or aromatic substitutes at R1-position. A comparison
between analog compounds (T-003 and T-018) with a methyl and trifluoromethyl group at R2-position,
respectively, showed that the electronegative properties of trifluoromethyl enhance their biological
activity. Compound T-018 showed the best biological activity (MIC = 0.15 µg/mL), a value similar
to the reference drug isoniazid (MIC = 0.12 µg/mL). Also, this compound showed the best activity
(low oxygen recovery assay (LORA) MIC = 0.34 µg/mL) against the NRP M. tuberculosis strain.
Analyzing all LORA results of quinoxaline 1,4-di-N-oxide derivatives, these compounds had the same
biological behavior on M. tuberculosis strain H37Rv; therefore, substitutions at R1- and R2-position also
affect biological activity on the NRP strain.

In the ethyl ester series in general, all quinoxaline 1,4-di-N-oxide derivatives showed good
anti-M. tuberculosis activity (MIC < 2.5 µg/mL) except compounds T-026 and T-045, which had ten
times less activity (MIC > 22 µg/mL). These compounds have an aliphatic linear substitution or a free
amino group at R1-position with a trifluoromethyl and methyl group at R2-position, respectively.
Compound T-015 with a carboxyethyl and methyl group at R1- and R2-position, respectively, showed
a MIC of 0.50 µg/mL. In addition, compounds with a trifluoromethyl group at R2-position showed
better anti-M. tuberculosis activity with an acetyl or aromatic group at R1-position. Compounds T-007
and T-011 showed MIC values (0.14 and 0.10 µg/mL) similar to that of isoniazid (MIC = 0.12 µg/mL).
These compounds have a thiophene and a naphthyl group, respectively. These groups could
consider a bioisostere from a phenyl group present in the best compound (T-018) of the methyl
ester series. Additionally, T-007, T-011, and T-018 showed the best effect on the NRP M. tuberculosis
strain. An analysis between the methyl and ethyl series showed that a substitution at R3-position
does not affect biological activity; for example, compounds T-008 and T-016 showed a similar MIC
value. Additionally, the ethyl quinoxaline 1,4-di-N-oxide series confirm that substitutions at R1- and
R2-position also affect the biological behavior on the NRP M. tuberculosis strain.
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Table 2. Biological activity of methyl and ethyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives
using the MABA against Mycobacterium tuberculosis strain H37Rv and the LORA against the
nonreplicating persistent strain.
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Results shown in Table 2 confirm that methyl and ethyl ester groups at R3-position on the
quinoxaline 1,4-di-N-oxide ring do not produce changes in anti-M. tuberculosis activity. However, these
results (at R1- and R2-position) also suggest that steric effects modify biological activity. Therefore,
we proposed obtaining two new series with an aliphatic substituent (isopropyl and n-propyl) at
R3-position to confirm a positive, negative, or null effect on biological activity (Table 3). SAR analysis
of the isopropyl series confirmed that a carboxylate (methyl and ethyl) group at R1-position enhanced
anti-M. tuberculosis activity. As in the previous methyl and ethyl series, benzoyl, arylcarboxamide,
or amine groups at R1-position reduced the activity with a methyl group at R2-position on the
quinoxaline 1,4-di-N-oxide ring. Interestingly, an isopropyl group at R1-position drastically decreased
biological activity. This confirms that steric effects are important in anti-M. tuberculosis activity.
Also, in the isopropyl series, compounds with a trifluoromethyl group at R2-position showed the best
activity. In particular, compound T-069 showed the best MIC (0.08 µg/mL) of all the quinoxaline
1,4-di-N-oxide derivatives. This compound is an analogue of compound T-011 (ethyl series), although
compound T-069 had a MIC value ten times higher. Therefore, the isopropyl group at R3-position
is a key factor to enhance anti-M. tuberculosis activity. In the n-propyl series, the SAR partner is the
same as the previous series (methyl, ethyl and isopropyl). The best compound in this series was T-089
(an analogue of T-011 and T-069) with a MIC of 0.12 µg/mL on strain H37Rv and 0.15 µg/mL on NRP
M. tuberculosis strain. A SAR analysis of all esters of quinoxaline 1,4-di-N-oxide is shown in Figure 1.
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Table 3. Biological activity of isopropyl and n-propyl quinoxaline-7-carboxylate 1,4-di-N-oxide
derivatives using the MABA against Mycobacterium tuberculosis strain H37Rv and the LORA against
nonreplicating persistent strain.

Molecules 2018, 23, x  5 of 12 

 

Table 3. Biological activity of isopropyl and n-propyl quinoxaline-7-carboxylate 1,4-di-N-oxide 

derivatives using the MABA against Mycobacterium tuberculosis strain H37Rv and the LORA against 

nonreplicating persistent strain. 

 

Code R1 R2 R3 MABA MIC (µg/mL)  LORA MIC (µg/mL) 

T-064 COOCH3 CH3 (CH3)2CH 0.58 0.56 

T-065 COOCH2CH3 CH3 (CH3)2CH 0.7 0.5 

T-066 COOC(CH3)3 CH3 (CH3)2CH 68.6 >100 (77%) 

T-067 COOCH2CH3 CH2COOCH2CH3 (CH3)2CH 3.41 2.47 

T-069 CO-thienyl CF3 (CH3)2CH 0.08 0.23 

T-070 COCH3 CF3 (CH3)2CH 0.14 0.24 

T-071 CO-phenyl CF3 (CH3)2CH 1.19 0.64 

T-072 CO-napthyl CF3 (CH3)2CH 0.15 0.51 

T-073 CO-furyl CF3 (CH3)2CH 0.7 0.6 

T-084 COCH3 CH3 (CH3)2CH 0.8 0.6 

T-085 COCH(CH3)2 CF3 (CH3)2CH 0.13 0.13 

T-088 COOCH3 CH3 CH3CH2CH2 0.14 0.27 

T-089 CO-thienyl CF3 CH3CH2CH2 0.12 0.15 

T-090 COOCH2CH3 CH3 CH3CH2CH2 0.8 ND 

T-091 COC(CH3)3 CH3 CH3CH2CH2 >100 (33%)  ND 

T-097 CONH-phenyl CH3 (CH3)2CH >20 (6%) >20 (33%) 

T-098 CO-phenyl CH3 (CH3)2CH 4.59 2.87 

T-107 COC(CH3)3 C(CH3)3 (CH3)2CH 2.1 ND 

T-108 CONH2 CH3 (CH3)2CH 22.5 ND 

T-111 COCH(CH3)2 CF3 CH3CH2CH2 1.5 ND 

T-112 COOCH2CH3 COCOOCH2CH3 CH3CH2CH2 1.4 ND 

T-113 COCH3 CF3 CH3CH2CH2 3.0 ND 

T-114 CO-furyl CF3 CH3CH2CH2 2.9 ND 

T-115 CO-phenyl CF3 CH3CH2CH2 1.5 ND 

T-124 COOCH2CH3 CF3 CH3CH2CH2 3.0 ND 

T-125 CONH-phenyl CH3 CH3CH2CH2 12.3 ND 

T-126 COCH3 CH3 CH3CH2CH2 3.0 ND 

T-130 CONH2 CH3 CH3CH2CH2 2.9 ND 

T-132 CO-phenyl CH3 CH3CH2CH2 2.3 ND 

RMP  0.03 0.89 

INH  0.12 >128 

ND = not determined; RMP: rifampicin; INH: isoniazid. 

 

Figure 1. A structure-activity relationship analysis from esters of quinoxaline-7-carboxylate 

1,4-di-N-oxide as antimycobacterial agents. 

Finally, eight compounds (MIC < 0.30 µg/mL) from all esters of quinoxaline 1,4-di-N-oxide 

derivatives were selected to be tested against monoresistant M. tuberculosis and some 

Code R1 R2 R3 MABA MIC (µg/mL) LORA MIC (µg/mL)

T-064 COOCH3 CH3 (CH3)2CH 0.58 0.56
T-065 COOCH2CH3 CH3 (CH3)2CH 0.7 0.5
T-066 COOC(CH3)3 CH3 (CH3)2CH 68.6 >100 (77%)
T-067 COOCH2CH3 CH2COOCH2CH3 (CH3)2CH 3.41 2.47
T-069 CO-thienyl CF3 (CH3)2CH 0.08 0.23
T-070 COCH3 CF3 (CH3)2CH 0.14 0.24
T-071 CO-phenyl CF3 (CH3)2CH 1.19 0.64
T-072 CO-napthyl CF3 (CH3)2CH 0.15 0.51
T-073 CO-furyl CF3 (CH3)2CH 0.7 0.6
T-084 COCH3 CH3 (CH3)2CH 0.8 0.6
T-085 COCH(CH3)2 CF3 (CH3)2CH 0.13 0.13
T-088 COOCH3 CH3 CH3CH2CH2 0.14 0.27
T-089 CO-thienyl CF3 CH3CH2CH2 0.12 0.15
T-090 COOCH2CH3 CH3 CH3CH2CH2 0.8 ND
T-091 COC(CH3)3 CH3 CH3CH2CH2 >100 (33%) ND
T-097 CONH-phenyl CH3 (CH3)2CH >20 (6%) >20 (33%)
T-098 CO-phenyl CH3 (CH3)2CH 4.59 2.87
T-107 COC(CH3)3 C(CH3)3 (CH3)2CH 2.1 ND
T-108 CONH2 CH3 (CH3)2CH 22.5 ND
T-111 COCH(CH3)2 CF3 CH3CH2CH2 1.5 ND
T-112 COOCH2CH3 COCOOCH2CH3 CH3CH2CH2 1.4 ND
T-113 COCH3 CF3 CH3CH2CH2 3.0 ND
T-114 CO-furyl CF3 CH3CH2CH2 2.9 ND
T-115 CO-phenyl CF3 CH3CH2CH2 1.5 ND
T-124 COOCH2CH3 CF3 CH3CH2CH2 3.0 ND
T-125 CONH-phenyl CH3 CH3CH2CH2 12.3 ND
T-126 COCH3 CH3 CH3CH2CH2 3.0 ND
T-130 CONH2 CH3 CH3CH2CH2 2.9 ND
T-132 CO-phenyl CH3 CH3CH2CH2 2.3 ND
RMP 0.03 0.89
INH 0.12 >128

ND = not determined; RMP: rifampicin; INH: isoniazid.
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Finally, eight compounds (MIC < 0.30 µg/mL) from all esters of quinoxaline 1,4-di-N-oxide
derivatives were selected to be tested against monoresistant M. tuberculosis and some nontuberculous
Mycobacterium (NTM) strains. Additionally, the half maximal cytotoxicity concentration (CC50) on
mammalian cell macrophages and the selectivity index (SI) were determined. The results are shown
in Table 4. In general, all compounds had similar MICs values on M. tuberculosis and monoresistant
strains. This suggests that the mechanism of action of esters of quinoxaline 1,4-di-N-oxide derivatives
is different from reference drugs. Although our compounds had good antimycobacterial activity,
none of the quinoxaline 1,4-di-N-oxide derivatives showed better MIC values than rifampicin in
monoresistant strains, except against M. tuberculosis strain H37Rv RR. Compounds T-022 and T-088
showed the best biological activity on this strain and the best SI value (SI > 70). Activity against the
NTM strains was not as good as with the tuberculosis strains; only compound T-085 was active against
all NTM strains, and the slow grower NTM M. avium strain was susceptible to all compounds except
T-088. These results confirm that these esters of quinoxaline 1,4-di-N-oxide can be considered for
development of new pharmacological options for the treatment of TB susceptible or drug resistant.

2.2. Inhibitory Assay

DNA gyrases are enzymes within the class of type II topoisomerase, which form a heterotetramer
composed of four subunits encoded by the gyrA and gyrB gene [17]. This enzyme catalyzes the
unwinding of double-stranded DNA through the introduction of negative supercoils. This process
is blocked by fluoroquinolones causing the formation of covalent enzyme-DNA adducts, which
leads to chromosome fragmentation and cell death in bacteria. Thus, DNA gyrases are known
targets for fluoroquinolones. However, some studies have hypothesized that quinoxaline derivatives
could inhibit DNA gyrases from M. tuberculosis [14,18]. Keeping in pace with these conjectures,
we analyzed the inhibitory effect of esters of quinoxaline 1,4-di-N-oxide derivatives on M. tuberculosis
gyrase supercoiling. The compounds tested were: T-003, T-013, T-018, and T-038 from the methyl
series; T-011 and T-012 from ethyl series; T064, T-069, and T-108 from isopropyl series; and T-114
and T-125 from n-propyl series. However, none of the compounds showed an inhibitory effect on
M. tuberculosis gyrase supercoiling at 50 µM. Moxifloxacin, the positive control, showed an IC50 value
of 9.44 µM. The compounds T-011, T-018, T-038, T-069, and T-114 showed the trifluoromethyl group
at R2-position, with this not interfering with the union of DNA-protein. This was observed in earlier
studies employing carcinogenic polycyclic aromatic compounds with trifluoromethyl group [19].
Based on these results, esters of quinoxaline 1,4-di-N-oxide derivatives may not be M. tuberculosis
gyrase supercoiling inhibitors, suggesting that these esters of quinoxaline 1,4-di-N-oxide derivatives
have another mechanism of action that needs to be explored.
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Table 4. Minimum inhibitory concentration (MIC in µg/mL) of esters of quinoxaline 1,4-di-N-oxide derivatives on monoresistant M. tuberculosis and some
nontuberculous Mycobacterium strains.

Code M. tb H37Rv M. tb H37Rv IR M. tb H37Rv ER M. tb H37Rv SR M. tb H37Rv RR M. fortuitum M. abscessus M. chelonae M. avium M. smegmatis CC50 SI

T-006 ~ 2.0 1.25 1.25 5 1.25 >10 >10 >10 2.5 >10 >100 + >50
T-011 ~ 0.5 <0.31 <0.31 0.625 <0.31 2.5 >10 >10 <0.31 0.62 1.67 − 3.34
T-018 * 1.0 0.62 0.62 1.25 0.625 >10 5 >10 2.5 2.5 35.37 − 35.37
T-022 * 0.5 0.62 0.62 0.625 <0.31 2.5 >10 2.5 2.5 0.62 86.25 + 172.5
T-069
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2.3. Stability Analysis by UPLC-MS

The presence of ester groups at 7-position on the quinoxaline 1,4-di-N-oxide ring could suggest
that these compounds will not be stable when tested in animal models. Therefore, a simple assay to test
the stability of compounds T-018 and T-069—methyl and isopropyl ester derivatives, respectively—was
performed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS).
The results are shown in Figure 2. Figure 2A, shows only one peak with a time retention of 1.26 min
corresponding to compound T-018 (m/z = 393.02). After 12 h in human plasma, two new low intensity
peaks are seen (time retention= 0.72 and 2.05 min) (Figure 2a). These peaks, which increased in
intensity after 24 h (Figure 2b) represented 4.82 and 4.12%, respectively, suggesting a low degradation
of compound T-018. In Figure 2B, only one peak was observed with a time retention of 1.51 min
corresponding to compound T-069 (m/z = 427.02). After 12 h, a second peak is seen at 0.62 min
(Figure 2c). Finally, after 24 h, another peak occurs at 2.72 min (Figure 2d). Both peaks at 24 h represent
0.83% and 2.20%, respectively, suggesting that T-069 had a lower degradation. These results show that
esters of quinoxaline 1,4-di-N-oxide are stable in human plasma after 24 h.
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3. Materials and Methods 

3.1. Chemical Synthesis 

All compounds from the methyl, ethyl, isopropyl, and n-propyl ester series of quinoxaline 

1,4-N-oxide were obtained following the procedure previously reported by Gomez-Caro et al. [20]. 

These compounds were analyzed by IR, 1H-NMR and elemental analysis and have been previously 

reported [21–24]. 
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Figure 2. Ultra performance liquid chromatography (UPLC) of (A) compound T-018 and (B) compound
T-069. (a) T-018 after 12 h in human plasma at 37 ◦C; (b) T-018 after 24 h in human plasma ◦C; (c) T-069
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3. Materials and Methods

3.1. Chemical Synthesis

All compounds from the methyl, ethyl, isopropyl, and n-propyl ester series of quinoxaline
1,4-N-oxide were obtained following the procedure previously reported by Gomez-Caro et al. [20].
These compounds were analyzed by IR, 1H-NMR and elemental analysis and have been previously
reported [21–24].

3.2. Antitubercular Assays

The antitubercular activity (MIC values) was assessed in vitro against Mycobacterium tuberculosis
strain H37Rv ATCC 27294 according to a modified microplate Alamar blue assay (MABA) [25].
The assays were performed in triplicate independent experiments. The standard M. tuberculosis strain
H37Rv was tested with known reference drugs rifampicin and isoniazid. The lowest drug concentration
effecting an inhibition of 90% was considered as MIC. Additionally, an in vitro LORA test was done
following the procedure previously reported by Cho et al. [26]. Antituberculosis activity testing against
drug monoresistant strains (ATCC35822, ATCC35838, ATCC35837, and ATCC35820) or NTM clinical
isolates was performed as described earlier by Luna-Herrera et al. [27].
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3.3. Selectivity Index

The determination of the half maximal cytotoxicity concentration (CC50) of the compounds
T-006, T-011, T-018, T-022, T-069, T-085, T-088, and T-089 was carried out on the mouse macrophage
cell line J774A.1 (ATCC TIB-67). Briefly, cell monolayers were prepared in 96-well plates with
10,000 cells per well in Ham’s F-12 medium supplemented with 10% Fetal bovine serum
(FBS, By products, Guadalajara, Mexico) and antibiotics (penicillin and gentamicin). Five concentrations
from 100 to 0.5 µg/mL of each of the compounds were tested. The cells were incubated for a period of
6 h (−) or 96 h (+). Before completing this period, 20 µL of Alamar blue solution was added to each
well, quantifying the relative fluorescence units in a fluorometer (Fluoroskan Ascent FL, Labsystems).
The percentage of cytotoxicity at each concentration was determined by comparing the values against
the control of cells without treatment. The CC50 was determined with the Probit regression analysis
(MedCalc Statistical Software version 18.5, Ostend, Belgium). Selectivity index was calculated as the
ratio of the CC50 on the macrophage cell line J774A.1 and the MIC value against M. tuberculosis strain
H37Rv [28].

3.4. Enzymatic Assay

3.4.1. Assay Set Up

The activity of the enzyme was determined prior to the testing of the quinoxaline 1,4-di-N-oxide
derivatives and 1 U was defined as the amount of enzyme required to just fully supercoil the substrate
under test conditions. Compounds were tested at 50 µM. Final DMSO concentration in the assays was
1% (v/v).

3.4.2. M. tuberculosis Gyrase Supercoiling

1 U of M. tuberculosis gyrase (GyrA and Gyr B subunits) (final concentration in assay 50 nM)
was incubated with 0.5 µg of relaxed pBR322 DNA in a 30 µL reaction at 37 ◦C for 30 min under the
following conditions: 50 mM HEPES. KOH (pH 7.9), 6 mM magnesium acetate, 4 mM DTT, 1 mM ATP,
100 mM potassium glutamate, 2 mM spermidine and 0.05 mg/mL albumin.

Each reaction was stopped by the addition of 30 µL chloroform/iso-amyl alcohol (26:1) and 20 µL
Stop Dye (40% sucrose, 100 mM Tris.HCl (pH 7.5), 10 mM EDTA, 0.5 µg/mL bromophenol blue),
before being loaded on a 1.0% TAE (Tris.acetate 0.04 mM, EDTA 0.002 mM) gel run at 80 V for 2 h.

3.4.3. Data Acquisition and Analysis

Bands were visualized by ethidium staining for 10 min, destained for 10 min in water, analyzed
by gel documentation equipment (Syngene, Cambridge, UK), and quantified using Syngene software
(Genetools version 4.00 (1997–1998), Syngene, A division of Synoptics Corp, Cambridge, UK).

Raw gel data (fluorescent band volumes) collected from Syngene’s GeneTools gel analysis software
were converted to a % of the 100% control (the supercoiled enzyme plus DMSO control DNA band).
These were analyzed using SigmaPlot Version 13.0 (Systat Software Inc., London, UK; 2016).

3.5. Chromatographic Analysis

Compounds T-018 and T-069 were selected to analyze their stability in human plasma. A total
of 1 mg of each of the two compounds was dissolved in 1 mL of dichlorometane. Then, 0.1 mL was
added to 0.9 mL of 0.1% formic acid in acetonitrile for analysis by UPLC with an ACQUITY QDa
mass detector from Waters (Milford, MA, USA) under the following conditions: column: ACQUITY
UPLC® BEH C18 1.7 µm, 2.1 × 100 mm; mobile phase: 0.1% formic acid/acetonitrile; run time: 5 min;
flow rate: 0.3 mL/min; injection volume: 0.5 µL; temperature: 40 ◦C. After that, 3 mL of human plasma
was obtained from a volunteer under medical supervision and following the standard procedures.
Then, 1 mg of T-018 and T-069 were dissolved with DMSO 2% and added to 1 mL of human plasma.
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Samples were incubated at 37 ◦C for 12 and 24 h. T-018 and T-069 were obtained by liquid extraction
with dichloromethane (10 mL) three times and the solvent was eliminated for vacuum pressure.
After that, 1 mL of dichlorometane was added and 0.1 mL was added to 0.9 mL of 0.1% formic acid in
acetonitrile and analyzed by UPLC-MS. Percentage of degradation was calculated considering the area
under the curve of each peak/the area under the curve of all peaks × 100% at 24 h only.

4. Conclusions

In this study, our results confirmed that esters of quinoxaline 1,4-di-N-oxide have good anti-M.
tuberculosis activity (MIC < 5 µg/mL) except for five compounds (T-045, ethyl series; T-066 and T-108,
isopropyl series; T-091 and T-0125, n-propyl series). Additionally, the best compounds (T-007, T-011,
T-018, T-069, T-070, T-072, T-085, and T-088) with a MIC value of ≤0.15 µg/mL showed biological
activity on both the nonreplicative cells and M. tuberculosis monoresistant strains. Structure-activity
analysis showed that the compounds with better biological activity were obtained when carboxylate,
trifluoromethyl, and isopropyl groups were present at R1, R2 and R3-position, respectively, on the
quinoxaline 1,4-di-N-oxide ring. An enzymatic assay showed that these compounds cannot inhibit
M. tuberculosis gyrase supercoiling. Also, these compounds showed a low degradation in human
plasma. Therefore, esters of quinoxaline 1,4-di-N-oxide are a good option for developing new
antitubercular agents.
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