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A B S T R A C T

Additively manufactured lattice structures enable the design of tissue scaffolds with tailored mechanical
properties, which can be implemented in porous biomaterials. The adaptation of bone to physiological loads
results in anisotropic bone tissue properties which are optimized for site-specific loads; therefore, some bone
sites are stiffer and stronger along the principal load direction compared to other orientations. In this work, a
semi-analytical model was developed for the design of transversely isotropic lattice structures that can mimic
the anisotropy characteristics of different types of bone tissue. Several design possibilities were explored, and a
particular unit cell, which was best suited for additive manufacturing was further analyzed. The design of the
unit cell was parameterized and in-silico analysis was performed via Finite Element Analysis. The structures
were manufactured additively in metal and tested under compressive loads in different orientations. Finite
element analysis showed good correlation with the semi-analytical model, especially for elastic constants with
low relative densities. The anisotropy measured experimentally showed a variable accuracy, highlighting the
deviations from designs to additively manufactured parts. Overall, the proposed model enables to exploit the
anisotropy of lattice structures to design lighter scaffolds with higher porosity and increased permeability by
aligning the scaffold with the principal direction of the load.
1. Introduction

The advances in additive manufacturing (AM) in recent years paved
the way for the manufacturing of lattice structures [1]. AM includes
many different categories such as direct energy deposition (DED),
material extrusion or powder bed fusion (PFB), among others [2]. PBF
in general, and selective laser melting (SLM) in particular, offers the
possibility to produce complex parts with very small feature sizes,
which makes it ideal for the manufacturing of scaffolds for bone tissue
engineering [3]. Lattice structures may be formed by stochastic patterns
or by predefined unit cells that fill the space to form a part [4]. The
mechanical properties of such parts can therefore be tuned by adjusting
the topology of the lattice structures forming them [5].

This has brought the attention of several fields, including the
biomedical [6,7], since lattice structures may be used as
meta-biomaterials for orthopedic implants or bone tissue scaffolds.
Bulk metals used for orthopedic implants have an elastic modulus 1
or 2 orders of magnitude higher than host bone [8]. This mismatch
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of stiffness creates a stress shielding effect, which weakens the bone
surrounding the implant, and might lead to implant loosening [8–
10]. On the one hand, lattice structures prevent the stress shielding
due to their lower stiffness level [11]; and on the other hand, they
promote bone ingrowth within the implant due to the interconnected
pore network, improving its fixation and stability [12].

Bone tissue exhibits different levels of anisotropy depending on
volume fraction and anatomical site [13–16]. Such anisotropy is highly
influenced by the mechanoadaptation in bone, which reflects the com-
plex loading environment the bone is subjected to. For example, it
has been shown that anisotropy has a profound effect in peri-implant
stress and strain in personalized mandibles [17] and maxillas [18], or in
the biomechanical behavior of the acetabular cup implant [19]. Thus,
matching not only the stiffness levels, but also anisotropy of host bone
when designing a lattice structure has the potential to better mimic
the mechanical behavior of bone [20]. On the other hand, for bone
substitutes in a location where physiological load has a clear principal
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orientation (such as the proximal tibia [21], the spine [22] or the
femur [23], where the loading is predominantly compressive and along
the anatomical axis), anisotropy can be used to reduce the density of
the lattice structure in the orientations other than the principal one,
thus enhancing permeability and mass transport of the scaffold, while
maintaining the strength and stiffness levels in the principal direction.

Many studies focus on the design of isotropic metamaterials [24–
26], and numerical and experimental studies have been performed
to determine the mechanical properties of different lattice structures.
Nevertheless, most of the literature is focused on uniaxial load in a
unique direction (commonly building direction), while this might not
necessarily coincide with the main load direction of the implant. Challis
et al. [27] and Xu et al. [28] studied the anisotropy of several lattice
structures numerically, and developed some macroscopically isotropic
structures. Cutolo et al. [29] and Munford et al. [30] tested different lat-
tice structures in several directions to derive their directional stiffness,
and Hossain et al. [31] also designed and tested isotropic stochastic
structures. Some analytical models that define the permeability [32]
and stiffness [33,34] of lattice structures have also been developed in
the literature. These models implemented together into optimization al-
gorithms can be a powerful tool to design optimal implants considering
both the mechanical performance and the fixation of the implant.

One way to obtain lattice structures with a unique principal direc-
tion is to develop transversely isotropic lattice structures, which also
corresponds to bone tissue in certain locations [35,36]. In this work
a semi-analytical model is developed to design transversely isotropic
stretch dominated lattice structures, with prescribed ratios of Young’s
moduli. This model can be used to design scaffolds that better mimic
the patient bone properties to maintain physiological load transfer and
to reduce the distortions in stress and strain caused by the implant. The
model also enables the design of personalized implants optimized for
the anatomical site and patient characteristics. The model was based
on previous studies of Hutchinson and Fleck [37], Tancogne-Dejean
and Mohr [25], and Messner et al. [24], which were modified to set
transverse isotropy as design objective.

2. Materials and methods

2.1. Semi-analytical model

2.1.1. Elastic behavior
In order to describe the mechanical behavior of a periodic lattice

it was assumed that the structures are stretch dominated: the bending
and torsion of the beams is neglected, and struts are considered to
deform axially and rotate freely at the joints. Under this assumption,
the stiffness matrix of any strut based lattice structure can be defined as
done by Tancogne-Dejean and Mohr [25] and Messner et al. [24], with
Eq. (1), where 𝐸𝑠 is the Young’s modulus of the constituent material, 𝑙(𝑖)
is the length of each strut, unit vector 𝒏(𝒊) represents the strut direction,
𝐴(𝑖) is the constant cross-section area of the strut, and 𝑉0 defines the
volume of the unit cell.

𝑪 = 𝐸𝑠

𝑁𝑠𝑡𝑟𝑢𝑡𝑠
∑

𝑖=1
𝑐(𝑖) 𝒏(𝒊) ⊗ 𝒏(𝒊) ⊗ 𝒏(𝒊) ⊗ 𝒏(𝒊), where 𝑐(𝑖) = 𝐴(𝑖)𝑙(𝑖)

𝑉0
(1)

This tensor can be represented in the common 6x6 matrix notation,
with each component of the matrix defined as 𝐶𝑖𝑗𝑘𝑙 obtained from
Eq. (1), and assuming an orthotropic material model. Fig. 1 defines the
orthogonal directions used as subscripts of the stiffness matrix, together
with some important directions defined with the Miller indices [100],
[110], [101], [111] and [001], and the isotropic 1–2 plane.

𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝐶1111 𝐶1122 𝐶1133 0 0 0
𝐶2222 𝐶2233 0 0 0

𝐶3333 0 0 0
𝐶2323 0 0

𝑠𝑦𝑚 𝐶1313 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(2)
2

⎣ 𝐶1212⎦
Fig. 1. Coordinate system used to define 1, 2 and 3 orientations in the semi-analytical
model, main directions according to the Miller indices ([100], [110], [101], [111] and
[001]), and 1–2 isotropic plane.

Eq. (3) defines a relevant property of the stiffness matrix: for a
stretch dominated lattice structure that fulfills the stated assumptions
it can be stated that 𝐶𝑖𝑖𝑗𝑗 = 𝐶𝑖𝑗𝑖𝑗 . Thus, the equivalent homogenized
metamaterial can be defined with a maximum of six independent
material constants, instead of nine as in any generalized orthotropic
material.

𝐶𝑗𝑗𝑘𝑘 = 𝐸𝑠

𝑁𝑠𝑡𝑟𝑢𝑡𝑠
∑

𝑖=1
𝑐(𝑖)(𝑛(𝑖)𝑗 )2(𝑛(𝑖)𝑘 )2 = 𝐶𝑗𝑘𝑗𝑘 (3)

On the other hand, Tancogne-Dejean and Mohr [25] show that un-
der the stated assumptions, the sum of the stiffness matrix components
equals the simple relative density (𝜌𝑠𝑖𝑚𝑝𝑙𝑒) of the structure multiplied
by the Young’s modulus of the material, as given in Eq. (4) (note that
restrictions in Eq. (3) were included):

𝐶1111 + 𝐶2222 + 𝐶3333 + 2𝐶1122 + 2𝐶1133 + 2𝐶2233 = 𝜌𝑠𝑖𝑚𝑝𝑙𝑒𝐸𝑠 (4)

In Eq. (4) the parameter 𝜌𝑠𝑖𝑚𝑝𝑙𝑒 is defined as the total sum of relative
densities of each individual strut, without considering the overlap at
the nodes. A correction fit was applied with the form of an exponential
curve to enhance the validity of the model, considering that the fraction
of the mass at the nodes is not negligible. This fit relates the theoretical
𝜌𝑠𝑖𝑚𝑝𝑙𝑒 obtained from the simple sum of volume fractions, and 𝜌𝑟𝑒𝑎𝑙,
which represents the real relative density of the structures:

𝜌𝑠𝑖𝑚𝑝𝑙𝑒 = 𝐶𝐷(𝜌𝑟𝑒𝑎𝑙)𝑛𝐷 (5)

As stated above, the 1–2 plane is considered to be isotropic (see
Fig. 1). This condition is enforced assuming that the elastic components
in direction 1 are equal to the direction 2 (𝐶1111 = 𝐶2222 and 𝐸1 = 𝐸2),
and that the elastic components in plane 1–3 are equal to the plane 2–3
(𝐶1133 = 𝐶2233, 𝐺13 = 𝐺23 and 𝜈13 = 𝜈23). Furthermore, the transverse
isotropy condition must hold Eq. (6), which can be simplified by using
Eq. (3):

𝐶1111 − 𝐶1122 = 2𝐶1212 → 𝐶1111 = 3𝐶1122 (6)

With the imposed restrictions for transverse isotropy, the stiffness
matrix can be defined as a function of the effective elastic constants of
the structure (𝐸1, 𝐸3, 𝜈12, 𝜈13 and 𝐺13) as done in Eq. (7). Note that
for isotropy in 1–2 plane 𝐺12 = 𝐸1∕2(1 + 𝜈12) must be fulfilled. Thus,
Eq. (7) relates the elastic constants with the effective stiffness matrix
of the structure. Furthermore, Eq. (6) can also be rewritten in terms of
elastic constants, as done in Eq. (8).

𝑪 = 𝑺−𝟏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

1
𝐸1

−𝜈12
𝐸1

−𝜈13
𝐸1

0 0 0
1
𝐸1

−𝜈13
𝐸1

0 0 0
1
𝐸3

0 0 0
1

𝐺13
0 0

𝑠𝑦𝑚 1
𝐺13

0
2(1+𝜈12)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

−1

(7)
⎣ 𝐸1 ⎦
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Table 1
Values of 𝜈12 obtained by linear least square approximation as a function of 𝐸3∕𝐸1.
𝑬𝟑∕𝑬𝟏 [–] 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

𝝂𝟏𝟐 [–] 0.2500 0.2518 0.2560 0.2612 0.2667 0.2722 0.2775 0.2824 0.2870
Fig. 2. Directional stiffness for constant 𝜌𝑟𝑒𝑎𝑙 and 𝐸3∕𝐸1 = 2, and varying 𝜈12.

𝐸3
𝐸1

𝜈213 + 3𝜈12 − 1 = 0 (8)

Eqs. (4) and (5) and the stiffness matrix symmetries for transverse
sotropy can be introduced in Eq. (7) to obtain the stiffness matrix
f any stretch dominated transversely isotropic lattice as defined in
q. (9). Thus, the stiffness of the structures is defined as a function of
he Young’s modulus of the constituent material (𝐸𝑠), the ratio between
tiffness in principal direction 3 and the transverse plane (𝐸3∕𝐸1), the
oisson’s ratios 𝜈12 and 𝜈13 (note that Eq. (8) should also be fulfilled),
he relative density of the structure (𝜌𝑟𝑒𝑎𝑙), and the parameters 𝐶𝐷 and
𝐷.

=
3𝐶𝐷(𝜌𝑟𝑒𝑎𝑙)𝑛𝐷𝐸𝑠

4[2 + 𝐸3
𝐸1

(1 − 𝜈12 + 4𝜈13)]

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1∕3 4
3
𝐸3
𝐸1

𝜈13 0 0 0

1 4
3
𝐸3
𝐸1

𝜈13 0 0 0
4
3
𝐸3
𝐸1

(1 − 𝜈12) 0 0 0
4
3
𝐸3
𝐸1

𝜈13 0 0

𝑠𝑦𝑚 4
3
𝐸3
𝐸1

𝜈13 0
1∕3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

For a given 𝜌𝑟𝑒𝑎𝑙 and 𝐸3∕𝐸1 ratio, there are infinitely many possible
onfigurations that fulfill the transverse isotropy condition, depending
n 𝜈12 or 𝜈13. Fig. 2 depicts the directional stiffness for different values
f 𝜈12, with constant 𝜌𝑟𝑒𝑎𝑙 and 𝐸3∕𝐸1.

The parameter 𝜈12 was chosen so that the change of stiffness is as
mooth as possible. Thus, the directional stiffness fits an ellipse in the
–3 plane with axes 𝐸1 and 𝐸3, and an equivalent ellipsoid in 3D space
green curve in Fig. 2). This was done by using the MATLAB Curve
itting Toolbox, and the obtained results of 𝜈12 for different 𝐸3∕𝐸1

ratios are shown in Table 1. Note that 𝐸3∕𝐸1 = 1 is a particular case of
the model that corresponds to elastically isotropic behavior. The 𝐸3∕𝐸1
ratios were chosen to be of interest for bone substitutes in the proximal
3

tibia, spine and femur [20,30].
2.1.2. Unit cell design
Eq. (9) defines the stiffness matrix of any transversely isotropic

stretch dominated structure, while Eq. (1) relates the stiffness matrix
with the geometric variables of the lattice structure: the orientation,
length, and cross-section area of the struts (𝒏(𝒊), 𝑙(𝑖) and 𝐴(𝑖), respec-
tively). This can be used to design a unit cell that actually fits in the
imposed stiffness matrix. Before obtaining such geometric parameters it
is necessary to define a strut configuration that might comply with the
imposed restrictions. Furthermore, the parameters 𝐶𝐷 and 𝑛𝐷 are mor-
phology dependent, and strut configuration must be known to define
them. Fig. 3 depicts the process of the design of a transversely isotropic
unit cell, with 𝐸3∕𝐸1, 𝜌𝑠𝑖𝑚𝑝𝑙𝑒, 𝐸𝑠 and strut configuration as input values,
and the diameters and aspect ratio (𝐾) as output parameters. The
parameter 𝜌𝑟𝑒𝑎𝑙 is an input value once the 𝐶𝐷 and 𝑛𝐷 coefficients are
obtained, but it also can be considered an output value needed to obtain
such coefficients for a set of given 𝜌𝑠𝑖𝑚𝑝𝑙𝑒 values.

Different combinations of well-known unit cells were used to build
the structures, namely SC, BCC and FCC. Fig. 4 depicts those unit cells,
while each color represents a different diameter value. Note that for
SC and FCC two different diameters were assigned in each unit cell,
whereas BCC has a unique diameter. These diameters are the design
variables that allow the combined unit cells to comply with stiffness
matrix in Eq. (9). Furthermore, another design parameter was included
among the variables to widen the range of possible designs: the aspect
ratio between the height and width of the unit cell, represented as 𝐾.

The arrangement of the diameter variables implicitly imposes 𝐶1111
= 𝐶2222 and 𝐶1133 = 𝐶2233. In addition, it can be proved that any unit cell
needs at least 4 design variables to comply with a transversely isotropic
stiffness matrix as defined in Eq. (9). Thus, the unit cells in Fig. 4 must
be combined so that they offer 4 different design parameters. These are
some of the possibilities:

• SC2BCC: SC with 2 diameters, and BCC with a unique diameter.
Thus, a variable height to width ratio 𝐾 is added to comply with
transverse isotropy (Fig. 5(a)).

• SC2FCC2: A combination of SC and FCC unit cells, with two
different diameters each (Fig. 5(b)).

• VFCCBCC: Combination of vertical struts (V), FCC struts out of the
isotropic plane and BCC struts, also considering variable height to
width ratio 𝐾 (Fig. 5(c)).

It should be noted that one of the challenges of SLM technology
is to fabricate horizontal struts (parallel to the building plate) that
guarantee the required quality from a structural point of view. In
order to overcome this limitation, the unit cell choice for this study
was the VFCCBCC (Fig. 5(c)) which offers the possibility to orient
the mass of the unit cell so that the orientation of the BCC and FCC
struts compensate the lack of horizontal struts with their lower angle
with respect to the building plane. Therefore, the VFCCBCC unit cell
was chosen for the rest of the numerical validation and experimental
analysis.

2.1.3. Elastic constants
For a given 𝜌𝑟𝑒𝑎𝑙, 𝐸3∕𝐸1, and 𝜈12 (obtained as in Table 1, and

provided that Eq. (8) holds), it is possible to analytically obtain the
transversely isotropic stiffness matrix of any of the proposed unit cells,
as well as the design parameters (diameters and 𝐾) that result in such
elastic response.

The elastic behavior of the proposed model depends on the unit cell
of the structures due to the adjustment between simple relative density
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Fig. 3. Design process of unit cells under the constraints of transversal isotropy.
Fig. 4. Basic unit cells to combine in order to form transversely isotropic lattices: (a) SC, (b) BCC, and (c) FCC.
Fig. 5. Unit cells of (a) SC2BCC, (b) SC2FCC2, and (c) VFCCBCC, with each strut color representing a different cross-section variable.
(sum of volume of each strut) and actual relative density (Eq. (5)). In or-
der to derive 𝐶𝐷 and 𝑛𝐷 parameters, different VFCCBCC configurations
were designed with different relative densities and 𝐸3∕𝐸1 ratios (it
was observed that the latter could be neglected for the relative density
adjustment).

Thus, the normalized elastic constants for the VFCCBCC lattice
structure (also valid for the other unit cells) are obtained as a function
of 𝜌𝑟𝑒𝑎𝑙, 𝐸3∕𝐸1, and 𝜈12 as described below:
𝐸1
𝐸𝑠

=
𝐸2
𝐸𝑠

= 𝐶𝐷(𝜌𝑟𝑒𝑎𝑙)𝑛𝐷
(1 + 𝜈12)

4 + 𝐸3
𝐸1

[2(1 − 𝜈12) + 8𝜈13]
(10)

𝐸3
𝐸𝑠

= 𝐶𝐷(𝜌𝑟𝑒𝑎𝑙)𝑛𝐷
𝐸3
𝐸1

(1 + 𝜈12)

4 + 𝐸3
𝐸1

[2(1 − 𝜈12) + 8𝜈13]
(11)

𝐺13
𝐸𝑠

=
𝐺23
𝐸𝑠

= 𝐶𝐷(𝜌𝑟𝑒𝑎𝑙)𝑛𝐷
𝐸3
𝐸1

𝜈13

2 + 𝐸3 [(1 − 𝜈 ) + 4𝜈 ]
(12)
4

𝐸1
12 13
The model is semi-analytical because the parameters 𝐶𝐷, 𝑛𝐷 and 𝜈12
are obtained by least square approximations.

2.1.4. Yield strength
The strength of an implant has to be sufficient to withstand the

physiological loads of each bone site, and a predictive tool for the
strength of the scaffolds is necessary for their application in orthopedic
implants. Thus, a semi-analytical model was developed to define the ef-
fective yield strength of the VFCCBCC structure. The stress at each strut
under an effective macroscopic stress was calculated using Eq. (13).
In this equation the scalar values with superscript (𝑖) correspond to
parameters of each strut: 𝜎(𝑖) and 𝜀(𝑖) are the stress and axial strain of
the strut (𝑖), respectively, and 𝒏(𝒊) defines the unit vector of the strut
orientation. 𝐸𝑠 is the Young’s modulus of the constituent material, 𝑺

defines the macroscopic compliance matrix of the structure and 𝝈𝒆𝒇𝒇

corresponds to the macroscopic effective stress applied to the structure.
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Fig. 6. Numerical models of the VFCCBCC unit cell with 𝐸3∕𝐸1 = 2 and varying relative densities of 0.09, 0.2 and 0.3.
Table 2
Material properties for FE model.

Young’s modulus Poisson’s ratio Yield strength Tangent modulus
[GPa] [–] [MPa] [MPa]

190 0.3 453 260

𝜎(𝑖) = 𝐸𝑠𝜀
(𝑖) = 𝐸𝑠

[

𝑺 ∶ (𝒏(𝒊) ⊗ 𝒏(𝒊))

]

∶ 𝝈𝒆𝒇𝒇 (13)

Thus, each strut of the unit cell will have a different stress level,
and it will be proportional to the macroscopic effective stress (𝝈𝒆𝒇𝒇 ).

The effective yield strength of the structure is calculated as the macro-
scopic stress that brings at least one strut to the yield strength of the
constituent material (𝜎𝑦,𝑠), that is 𝜎(𝑖)𝑚𝑎𝑥 = 𝜎𝑦,𝑠. As occurs with stiffness,
the effective yield strength varies depending on the orientation of the
load. To obtain the directional effective yield strength of the structures,
denoted as 𝜎𝑒𝑓𝑓 ,𝑦, a uniaxial 𝝈𝒆𝒇𝒇 was applied in various orientations

covering all the 3D space, and the magnitude 𝜎𝑒𝑓𝑓 ,𝑦 was calculated to
induce 𝜎𝑦,𝑠 stress level in the struts.

2.2. Numerical validation

The accuracy of the semi-analytical model and the effect of the
relative density on the unit cell was studied with several numerical
models built in Abaqus 2020 (Dassault Systems). 9 different unit cells
were modeled for each 𝐸3∕𝐸1 ratio with relative densities varying from
1% to 30%, and 𝐸3∕𝐸1 ratios of 1.5, 2, and 3. The relative density of the
structures was defined to ensure a high porosity range of the implants
needed in scaffold design [38,39]. Fig. 6 depicts some of the analyzed
structures with different relative densities. The models where meshed
with second order tetrahedral elements and after conducting a mesh
sensitivity analysis, the diameter/element size ratio was set to 5 for all
the structures.

The material properties of 316L stainless steel were modeled as a
bilinear material model, with values given in Table 2 [40].

Periodic Boundary Conditions (PBC) were applied and the code of
Omairey [41] was used to get the elastic constants of the VFCCBCC
unit cell. Apart from the elastic and shear moduli, the accuracy of the
semi-analytical model was also assessed by the 𝐸3∕𝐸1 ratio, as well as
the Zener ratio in the 1–2 plane, which gives the measure of elastic
isotropy:

𝑍12 =
2𝐶1212

𝐶1111 − 𝐶1122
(14)

On the other hand, uniaxial stress was applied in directions [001],
[110], [101], [111], [100] in the VFCCBCC unit cell with different
relative densities, and under PBC to numerically calculate the yield
strength of the structure.

The criteria to numerically determine the yield strength of the
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structure had to be adapted from the one used for the analytical model,
Table 3
Diameters of manufactured structures for both relative densities.

Diameters [mm]

Structure Relative density [%] Vertical (angle) FCC (angle) BCC (angle)

A 12.5 0.47 (90.0) 0.22 (33.0) 0.23 (24.7)
B 25.0 0.70 (90.0) 0.33 (33.0) 0.35 (24.7)

where the struts were treated as axially loaded beams with a constant
stress through the strut. Instead, the criteria to numerically determine
the yield stress of the structure was to find the macroscopic stress value
where the plastic dissipation energy exceeded 10% of the total energy
of the structure, similarly to [25]. The results were compared to the
semi-analytically obtained yield strength values.

2.3. Manufacturing

VFCCBCC structures were produced with 𝐸3∕𝐸1 = 2 and two dif-
ferent relative densities, 12.5% and 25%, to be tested in three different
orientations, namely [100], [110] and [001]. To test 3 samples per den-
sity and load orientation, a total of 18 parts were manufactured. Unit
cell size was 3 mm, and the manufacturing orientation was the same
in all cases to maintain the orientation of every strut with respect to
the build plate and prevent unequal imperfection distributions between
batches.

All specimens were manufactured on an AM250 metal powder bed
fusion machine (Renishaw Plc.) under an inert argon atmosphere from
Stainless Steel 316L directly onto a mild steel substrate. The parts were
removed from the plate by electro discharge machining. Build files
for the specimens were generated from an in-house piece of software,
described previously in [42]. The software allows lattices to be defined
in a beam format (start and end x,y,z positions) with a desired diameter.
Based on the strut angle and desired diameter, laser parameters are
assigned accordingly. Laser parameters were assigned to produce the
struts of diameter described in Table 3.

The relative density of the produced specimens was measured by
weighing the structures and dividing by the theoretical weight of a solid
part with the external volume of the structures. On the other hand, to
measure strut density Archimedes method was used as done in other
studies [43]. This method consists in measuring the weight difference of
the part when submerged into ethanol compared to a dry environment
(in air) to determine the proportion of internal pores. Eq. (15) defines
the strut density (𝜌𝑠𝑡𝑟𝑢𝑡) as a function of the weight of the structure in
air (𝑤𝑎𝑖𝑟), the density of ethanol (𝜌𝑒𝑡ℎ𝑎𝑛𝑜𝑙), the density of 316L stainless
steel (𝜌316𝐿) and the weight of the structure in ethanol (𝑤𝑒𝑡ℎ𝑎𝑛𝑜𝑙).

𝜌𝑠𝑡𝑟𝑢𝑡 =
𝑤𝑎𝑖𝑟 𝜌𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝜌316𝐿 (𝑤𝑎𝑖𝑟 −𝑤𝑒𝑡ℎ𝑎𝑛𝑜𝑙)
(15)

2.4. Mechanical testing

Compression tests were carried out as per ISO 13314:2011 [44] in
an Instron 3360 with a load cell of 30kN except for the structure B in

[001] orientation, which was tested in a Instron 5982 with a load cell
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Fig. 7. Designed VFCCBCC structures with different relative densities and 𝐸3∕𝐸1
values, and adjusted curve.

of 100kN due to its higher strength. The tests were performed in three
different orientations for each relative density: [001], [100] and [110].
For each relative density and orientation 3 specimens were tested. The
strain was calculated after measuring the compliance of the machines.
For each specimen quasi-elastic gradient and 0.2% offset stress (yield
strength) was calculated.

3. Results

3.1. Semi-analytical model

Fig. 7 depicts the simple relative density (𝜌𝑠𝑖𝑚𝑝𝑙𝑒) of the VFCCBCC
structure as a function of its real relative density (𝜌𝑟𝑒𝑎𝑙). The 𝜌𝑟𝑒𝑎𝑙
values were obtained from CAD measurements of models with different
𝐸3∕𝐸1 ratios. The 𝐶𝐷 and 𝑛𝐷 values derived by least square approxi-
mation (𝑅2 = 0.999) are 1.65 and 1.169, respectively. The values for
the SC2BCC and SC2FCC2 are displayed in Table S1 (supplementary
material).

Fig. 8 shows the yield surface of VFCCBCC unit cells for uniaxial
loads in any orientation. The surfaces for 𝐸3∕𝐸1 = 1.5, 𝐸3∕𝐸1 = 2, and
𝐸3∕𝐸1 = 3 are depicted, which are in the bone range (spine trabec-
ular [22], proximal tibia [21] or femur cortical bone [23]). Effective
yield strength (𝜎𝑒𝑓𝑓 ,𝑦) is obtained from Eq. (13), and normalized with
the density variable 𝐶𝐷(𝜌𝑟𝑒𝑎𝑙)𝑛𝐷 and the yield strength of the constituent
material (𝜎𝑦,𝑠). It can be observed that for any 𝐸3∕𝐸1 ratio, the structure
is weaker in the directions that coincide with strut orientations, because
the load is primarily carried by a single strut. On the contrary, in other
orientations the load is more effectively distributed among struts. The
effective strength in the transverse plane reduces with the increase of
𝐸3∕𝐸1 ratio, while the strength in [001] increases.

Fig. 9 depicts the values of normalized yield strength of VFCCBCC
for different 𝐸3∕𝐸1 ratios, under [001] and [110] orientations, since
the latter is the weakest orientation in the transverse plane. Thus,
the effective yield strength of the structure can be directly calculated
for any relative density by multiplying the normalized strength value
with the yield strength of the constituent material. The strength ratio
between the [001] and [110] plane is always lower than the 𝐸3∕𝐸1
ratio, with values of 1.21, 1.60 and 2.41 for 𝐸3∕𝐸1 of 1.5, 2, and 3,
respectively.
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3.2. Finite element validation

3.2.1. Elastic behavior
The results of the numerical simulations of VFCCBCC unit cells with

𝐸3∕𝐸1 = 1.5, 𝐸3∕𝐸1 = 2, 𝐸3∕𝐸1 = 3 are depicted in Fig. 10, showing
the elastic constants 𝐸1, 𝐸3, 𝐺12, 𝐺13, 𝜈12, and 𝜈13, and comparing the
obtained values with the semi-analytical model obtained from Eqs. (8),
(10)–(12). In general, a very good agreement between the FE analysis
and the semi-analytical model can be observed, especially for low
relative densities, and the error increases with the relative density.

In the case of effective Young’s modulus, 𝐸3 is more accurate than
𝐸1 for any 𝐸3∕𝐸1 ratio. The 𝑅2 coefficients for 𝐸1 lay between 0.885
and 0.941, whereas for 𝐸3 the 𝑅2 values are higher than 0.989 for any
𝐸3∕𝐸1 ratio. This occurs because the assumption of pure axial stress
is better fulfilled in [001] orientation due to the vertical struts of the
VFCCBCC unit cell, while for [100] this assumption is not as valid for
moderate relative densities. As a result, the maximum relative error
arises for the highest studied relative density of 0.3. In this case, the
maximum error of 𝐸1 is 22.8% for 𝐸3∕𝐸1 = 3, and in the case of 𝐸3 the
maximum relative error is 7.8% for 𝐸3∕𝐸1 = 1.5.

The accuracy of the shear moduli is lower than for Young’s moduli.
For 𝐺12 the 𝑅2 value is between 0.878 (𝐸3∕𝐸1 = 3) and 0.938 (𝐸3∕𝐸1 =
1.5), while 𝐺13 has 𝑅2 coefficients between 0.930 (𝐸3∕𝐸1 = 3) and
0.954 (𝐸3∕𝐸1 = 1.5). For 𝜌𝑟𝑒𝑎𝑙 = 0.3, the maximum relative error for
𝐺12 is 23.8% and for 𝐺13 equals 17.7% (𝐸3∕𝐸1 = 3 in both cases). For
Poisson’s ratios, the maximum error values of 𝜈12 are 7.9%, 6.7% and
6.1% for 𝐸3∕𝐸1 = 1.5, 𝐸3∕𝐸1 = 2 and 𝐸3∕𝐸1 = 3, respectively, and
7.2%, 10.7% and 17.8% for 𝜈13. Fig. 10(d) depicts the 3D stiffness of
the FE model with a 𝜌𝑟𝑒𝑎𝑙 = 0.2 and 𝐸3∕𝐸1 = 2. The directional stiffness
has the expected ellipsoidal shape, the change in stiffness is smooth and
the variability in the 1–2 plane is very small (below 0.1%).

As depicted in Fig. 11(a), the accuracy of the 𝐸3∕𝐸1 ratio is very
high for low relative densities, but decreases with increased relative
density for any of the studied cases. This is a consequence of the
bending that increases the stiffness more in direction [100] compared
to [001], as also observed in Fig. 10(a). Furthermore, as prescribed
𝐸3∕𝐸1 increases, the error of the semi-analytical model also increases.
For 𝜌𝑟𝑒𝑎𝑙 = 0.3, the relative errors of 𝐸3∕𝐸1 are 10.7%, 20% and 33.1%
for 𝐸3∕𝐸1 = 1.5, 𝐸3∕𝐸1 = 2, and 𝐸3∕𝐸1 = 3 respectively. On the
other hand, the Zener ratio in the 1–2 plane, which measures the elastic
isotropy in the plane, and defined in Eq. (14), is depicted in Fig. 11(b)
for the three 𝐸3∕𝐸1 ratios, showing that the transverse isotropy is
maintained with a relative error below 2.8% for any studied relative
density and 𝐸3∕𝐸1 ratio. This suggests that the stiffness added by the
bending of struts acts uniformly in the 1–2 plane.

Fig. 12 depicts the Von Mises stress of the VFCCBCC unit cell under
pure shear load in the 1–2 plane for two relative densities. The stress
of the loaded struts is closer to the assumption of uniaxial uniform
stress for thin struts, while in thick struts the bending loads induce
non-uniform stresses along the struts. Furthermore, the strut joints have
more relevance for higher relative densities, and triaxial stress states
arising there affect a larger part of the structure. This explains the
gradual loss of accuracy as the relative density increases.

The relative importance of the bending load also depends on the
load type and orientation: the loads or deformations aligned with struts
result in lower bending loads, which explains the variability of the
accuracy for different elastic constants and yield strengths for the same
relative density.

3.2.2. Yield strength
The accuracy of the semi-analytical model (Eq. (13)) to predict the

yield strength of the VFCCBCC unit cell varies depending on the load
orientation, the 𝐸3∕𝐸1 ratio and the relative density. Fig. 13 shows the
yield strength for 5 different orientations, defined as in Fig. 1, and for
𝐸3∕𝐸1 = 1.5, 𝐸3∕𝐸1 = 2, and 𝐸3∕𝐸1 = 3. The semi-analytical yield

model has the highest accuracy for [001] and [110] orientations, with
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Fig. 8. Semi-analytical yield surface of VFCCBCC in 3D space obtained from Eq. (13) with (a) 𝐸3∕𝐸1 = 1.5, (b) 𝐸3∕𝐸1 = 2, and (c) 𝐸3∕𝐸1 = 3.
Fig. 9. Yield strength of VFCCBCC for [110] (weakest orientation in transverse plane)
and [001] orientations, for different 𝐸3∕𝐸1 ratios.

𝑅2 values above 0.993 and 0.997, respectively, regardless 𝐸3∕𝐸1 ratios.
In orientations [101] and [111] the semi-analytical model slightly
underestimates the strength of the structures, but the 𝑅2 coefficients
indicate high correlation with minimum values of 0.969 for [101] and
0.955 for [111] for any 𝐸3∕𝐸1 stiffness ratio. On the other hand, the
semi-analytical model overestimates the strength in [100] orientation,
and the 𝑅2 coefficient increases with 𝐸3∕𝐸1 ratio, with 𝑅2 = 0.888 for
𝐸3∕𝐸1 = 1.5 and 𝑅2 = 0.919 for 𝐸3∕𝐸1 = 3.

3.3. Mechanical testing

3.3.1. Morphology of specimens
Specimens of two prescribed relative densities were produced,

12.5% and 25%, and the resulting relative density and strut density
properties are given in Table 4. The average differences between the
designed and manufactured relative densities were of 2.2% in batch A
and 7.3% in batch B. Even if the manufacturing parameters were the
same within each batch, a significant variability (relative variability
above 10% with respect to the designed value) of the produced relative
densities can be observed in batch B. The strut density is above 98% in
all cases, indicating some prevalence of internal pores.
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Table 4
Relative density and strut density values for produced specimens.
Specimen Relative density [%] Strut density [%]

A-[001] 9.77 ± 0.46 98.67 ± 0.58
A-[100] 10.27 ± 0.40 98.45 ± 0.22
A-[110] 9.28 ± 0.40 98.63 ± 0.61

B-[001] 19.44 ± 0.06 99.15 ± 0.17
B-[100] 16.47 ± 0.27 98.88 ± 0.12
B-[110] 17.30 ± 0.69 98.98 ± 0.02

Fig. 14 depicts the actual morphology of the struts, indicating clear
deviations from the designed CAD geometry. An important waviness
can be observed, especially in the struts with lower angles with respect
to the build plate. Moreover, in the thinnest struts the staircase effect
that arises from the layer by layer manufacturing process is clearly
visible, and this effect is enhanced by the fact that the struts were
produced point by point.

3.3.2. Quasi-static compression
The curves obtained from quasi-static compression tests are given in

Fig. 15. Figs. 15(a) and 15(b) correspond to the batch A, and Figs. 15(c)
and 15(d) depict the compression curves of batch B. The shaded areas
in Figs. 15(a) and 15(c) represent the 95% confidence interval, and
Figs. 15(b) and 15(d) depict a close-up of the compression curves up
to a strain of 0.06, in order to give a better insight into the elastic
response of the structures. The stress–strain curves present a expected
shape for ductile metals, with a linear region, followed by the yielding
of the structures and an energy absorption process up to densification
of the structures. The variability within each sample is much higher
in the batch A as shown in Fig. 15(a). Furthermore, its lower relative
density results in a compression process dominated by buckling with
more peaks and valleys.

The obtained mechanical properties are listed in Table 5. For both
relative densities the quasi-elastic gradient in direction [001] clearly
exceeds the gradient in directions [100] and [110], as would be ex-
pected from the design of the structures.

Fig. 16 depicts the anisotropy characteristics of the semi-analytical
and numerical models, compared to the experimental values in struc-
tures A and B. The 𝐸110∕𝐸1 and 𝐸3∕𝐸1 ratios are lower than the
analytical values for both manufactured structures, nonetheless, the
structure B is in good agreement with the prescribed values (relative
error of 3% for 𝐸3∕𝐸1 and 10% for 𝐸110∕𝐸1). While the accuracy of the
numerical model decreases with higher relative densities (see 𝐸3∕𝐸1
ratios in FEM), this also enables a reduced imperfection level of the
manufactured structures, thus reducing the error of the anisotropy with
respect to the semi-analytical model (experimental 𝐸3∕𝐸1 and 𝐸110∕𝐸1
ratios).



Computers in Biology and Medicine 150 (2022) 105761

8

M. Alaña et al.

Fig. 10. Semi-analytical and FEM comparison of the elastic behavior of VFCCBCC unit cell for 𝐸3∕𝐸1 = 1.5, 𝐸3∕𝐸1 = 2 and 𝐸3∕𝐸1 = 3: (a) Young’s moduli, (b) shear moduli, (c)
Poisson’s ratios. (d) is the directional homogenized stiffness for 𝐸3∕𝐸1 = 2.

Fig. 11. Semi-analytical and FEM comparison of the elastic behavior of VFCCBCC unit cell for 𝐸3∕𝐸1 = 1.5, 𝐸3∕𝐸1 = 2 and 𝐸3∕𝐸1 = 3: (a) 𝐸3∕𝐸1 ratio, and (b) Zener ratio.
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Fig. 12. Von Mises stress of VFCCBCC unit cells with different relative densities under shear load in 1–2 plane.

Fig. 13. Effective yield strength of VFCCBCC unit cell in various orientations, normalized with constituent material yield strength, and for different 𝐸3∕𝐸1 ratios: (a) 𝐸3∕𝐸1 = 1.5
(b) 𝐸3∕𝐸1 = 2, (c) 𝐸3∕𝐸1 = 3.

Fig. 14. Manufactured specimens of VFCCBCC structures for loading in [001] corresponding to batch A (a) and (b), and batch B (c) and (d).
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Table 5
Results of quasi-static compression tests for batches A and B in directions [001], [100] and [110].

A B

[001] [100] [110] [001] [100] [110]

Quasi-elastic gradient [GPa] 1.55 ± 0.22 1.00 ± 0.07 0.70 ± 0.03 2.94 ± 0.28 1.51 ± 0.03 1.37 ± 0.05
𝝈𝒚 [MPa] 6.04 ± 0.24 5.83 ± 0.39 3.83 ± 0.47 17.37 ± 0.2 10.64 ± 0.7 9.77 ± 0.8
Fig. 15. Stress–strain curves of specimens under [001], [100] and [110] load directions for batch A (a) until densification and (b) until 𝜀 = 0.06; and batch B (c) until densification
and (d) until 𝜀 = 0.06.
Fig. 16. Elastic moduli ratios for semi-analytical model and numerical and
experimental values of structures A and B.
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4. Discussion

4.1. Validity of semi-analytical model

In this work a semi-analytical model was developed to design trans-
versely isotropic porous structures. The model shows good correlation
with numerical results, even if the overall accuracy decreases for higher
relative densities and 𝐸3∕𝐸1 ratios. This deviation can be attributed to
the arise of bending loads and stress triaxialities as the slenderness of
the struts decreases.

Experimental tests were also carried out with structures A and B,
but the absolute mechanical properties are not compared directly to
the values predicted by the semi-analytical and numerical models, since
the manufacturing imperfections of the VFCCBCC unit cell cause an im-
portant decrease of stiffness and strength. These imperfections include
strut waviness, dross formation, surface roughness, etc. These types of
deviations are more common when manufacturing thin struts or small
unit cell sizes and their detrimental effect on mechanical properties
has been broadly studied [45–47]. Moreover, these imperfections may
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Fig. 17. Stiffness values in main and transverse orientations in implants for (a) proximal tibia [30], (b) spine [16,22,50,51], and (c) load bearing cortical bone [9].
change the anisotropy characteristics of the lattice structures [29,48],
as can be observed by comparing the A and B structures.

The similarity of the experimental anisotropy levels of structure B
with designed values compared to the structure A might be attributed to
lower imperfection levels due to larger strut diameters for structure B.
This indicates that the semi-analytical model can be used to design unit
cells with prescribed anisotropy. Furthermore, the good agreement be-
tween analytical and numerical models suggests that reducing the level
of imperfection e.g. increasing unit cell size, the absolute mechanical
properties of the structures can be better predicted.

4.2. Patient-specific scaffold design

The developed semi-analytical model enables to design scaffolds
that mimic various stiffness ratios that appear in bone tissue. Thus,
patient-specific bone volume fraction and anisotropy can be used as
input values to design implants with equivalent stiffness in different
directions, reducing peri-implant stress and strain distortions. Fur-
thermore, with the obtained model, different elastic moduli can be
achieved in the principal direction for a prescribed porosity by varying
the 𝐸3∕𝐸1 ratio, while for regular lattice structures each porosity
value corresponds to a unique value of elastic modulus (Gibson–Ashby
model [49]).

This feature can be used to implement the model in the biomedical
sector, specifically for the design of patient-specific implants. To show
the utility of this model for implant applications, three case studies are
depicted in Fig. 17: (a) knee replacement in proximal tibia, (b) spine
cancellous bone, and (c) load bearing cortical bone in different sites,
such as femur. The colored surfaces represent the possible 𝐸1 and 𝐸3
values of the semi-analytical model for each value of relative density,
while the gray areas correspond to the stiffness of bones in literature.
A different parent material was chosen for each site to better match
the target elastic properties, while also considering biocompatibility of
the materials: Ti6Al4V for knee replacement, PEEK for spine cancellous
bone, and CoCr for various cortical bones.

Knee replacements are in the increase due to the prevalence of
osteoarthritis in the knee joint. The proximal tibia, which is replaced
by this surgery, is mainly loaded in compression along the anatomical
axis; thus, the design of knee implants should be based on bone
elastic modulus in that direction (81 and 1500 MPa) with a degree of
anisotropy ranging from 1.3 to 3.4 [21]. Fig. 17(a) shows the possible
design space of the semi-analytical model to match the stiffness range
of the proximal tibia in 𝐸1 and 𝐸3. The model covers a great part of the
proximal tibia stiffness range, even if the manufacturing below relative
densities of 0.1 can be challenging, and possibly larger unit cell sizes
are required for such designs. It must be noted that a Young’s modulus
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of 37.5 GPa was given to the Ti6Al4V parent material. This low
modulus is a result of tensile tests of micro-struts to implicitly consider
the manufacturing deviations of strut-based lattice structures [52].

The spine is also mainly loaded along its anatomical axis, and its
cancellous bone can have a wide range of stiffness values according to
different studies, with 𝐸3∕𝐸1 ratios as high as 7.3 [16,22,50,51]. In this
case, PEEK (E = 4 GPa) was chosen as parent material to match the
elastic behavior of the spine. The design space of the semi-analytical
model covers most of the 𝐸3 stiffness ranges within relative densities
between 0.1 and 0.3, as depicted in Fig. 17(b). On the other hand,
some of the 𝐸3∕𝐸1 ratios of the spine exceed the design space of the
transversely isotropic model. In these cases it is possible to match the
𝐸3 stiffness along the anatomical axis, at the cost of having a higher 𝐸1
value in the transverse plane.

The cortical bone is transversely isotropic due to its microstructure,
which is formed by aligned osteons that give superior stiffness along
the diaphyseal axis, and inferior isotropic stiffness in the transverse
plane [9,23,53]. For Fig. 17(c) CoCr (E = 200 GPa) was assigned
as parent material to enhance the stiffness of the design space of
the semi-analytical model and mimic the elastic behavior of cortical
bone. Thus, the model perfectly covers the 𝐸3 and 𝐸1 values found
in literature, even if in some cases high relative densities above 0.3
are required. On the other hand, these stiffness values are expected for
perfectly manufactured structures, which is rarely the case in additively
manufactured scaffolds. The unit cell size should be increased to have
larger features to be manufactured with a reduced imperfection level
to reach stiffness levels predicted by the model.

The transversely isotropic scaffolds aligned with the main load di-
rection allow the design of lighter implants due to the reduced mass in
the transverse direction. This also means that higher permeability can
be achieved, enhancing bone ingrowth and vascularization within the
implant while ensuring necessary stiffness and strength in the direction
of the main load. This model could be implemented into optimization
algorithms with other analytical models describing the permeability of
the structure to design optimal and personalized implants based on the
bone site and characteristics of the bone patient [32]. Moreover, the
established relationship between the morphology of stretch dominated
lattice structures and their orthotropic effective stiffness matrix enables
optimization-based design to tailor the stiffness of different bone sites
while also considering bone site specific anisotropy.

5. Conclusions

A semi-analytical model was developed to design transversely
isotropic lattice structures with prescribed stiffness ratios between the
longitudinal and transverse directions. Numerical and experimental
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analyses were performed to test the validity of the designs, and the
main conclusions are as follows:

• The developed semi-analytical model effectively describes a trans-
versely isotropic elastic behavior, with ellipsoidal directional
stiffness, which enables the design of unit cells with prescribed
anisotropy.

• The obtained semi-analytical model is capable of mimicking the
stiffness and anisotropy of different bone sites such as proximal
tibia, spine or femoral cortical bone. By correctly aligning the
scaffold with the principal directions of the bone, a higher poros-
ity of the scaffolds can be achieved compared to other isotropic
counterparts.

• Many possible strut configurations are available to obtain a pre-
scribed transverse isotropy. This work analyzed the VFCCBCC unit
cell in more detail, and SC2BCC and SC2FCC2 were also presented
as viable for transverse isotropy.

• The elastic constants obtained from numerical models of VFC-
CBCC unit cell are in good agreement with the semi-analytical
model. The accuracy of the model decreases with an increase of
relative density, and higher 𝐸3∕𝐸1 ratios also have a detrimental
effect.

• Quasi-static compressive tests indicate that prescribed anisotropy
can be achieved with the VFCCBCC unit cell, even if for lower rel-
ative densities the deviations from designed parameters increase
due to the manufacturing defects.
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