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a b s t r a c t 

As the correlation matrices of stationary vector processes are block Toeplitz, autoregressive 

(AR) vector processes are non-stationary. However, in the literature, an AR vector process 

of finite order is said to be “stationary ” if it satisfies the so-called stationarity condition 

(i.e., if the spectral radius of the associated companion matrix is less than one). Since the 

term “stationary ” is used for such an AR vector process, its correlation matrices should 

“somehow approach ” the correlation matrices of a stationary vector process, but the mean- 

ing of “somehow approach ” has not been mathematically established in the literature. In 

the present paper we give necessary and sufficient conditions for AR vector processes to 

be “stationary ”. These conditions show in which sense the correlation matrices of an AR 

“stationary ” vector process asymptotically behave like block Toeplitz matrices. Applications 

in information theory and in statistical signal processing of these necessary and sufficient 

conditions are also given. 

© 2022 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

1. Introduction 

As the correlation matrices of wide sense stationary (WSS) vector processes are block Toeplitz, autoregressive (AR) vector 

processes are not WSS (and thus not stationary). However, in the literature, an AR vector process of finite order is said to be

“stationary ” if it satisfies the so-called stationarity condition (i.e., if the spectral radius of the associated companion matrix 

is less than one (see, e.g., [1, Section 2.2.1] )). Since the term “stationary ” is used for such an AR vector process, its correla-

tion matrices should “somehow approach ” the correlation matrices of a WSS vector process, but the meaning of “somehow 

approach ” has not been mathematically established in the literature. In this paper we formally establish the meaning of 

“somehow approach ” by using the definition of asymptotically WSS (AWSS) process (which was given in [2, p. 225] for 1-

dimensional (or scalar) processes and in [3, Definition 7.1] for vector processes). In other words, in this paper we prove that

a necessary and sufficient condition for an AR vector process to be “stationary ” is to be AWSS. 
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Unlike the stationarity condition, the definition of AWSS process provides information about the asymptotic behaviour 

of the correlation matrices of the process. Another concept regarding the asymptotic behaviour of the correlation matrices 

of a stochastic (or random) process was given in [4, p. 223] , namely, the concept of asymptotically stationary correlation

structure. In the present paper, we also obtain a sufficient condition for stochastic vector processes to be AWSS and to

have an asymptotically stationary correlation structure. Moreover, we show that this sufficient condition is also a necessary 

condition to be AWSS if the stochastic vector processes are AR. Consequently, in this paper we prove that a necessary

condition for an AR vector process to be “stationary ” is to have an asymptotically stationary correlation structure. 

The necessary and sufficient conditions obtained here find application in practical situations involving computations with 

large correlation matrices of AR “stationary ” vector processes. As examples of such practical applications we obtain a novel 

result in information theory and another one in statistical signal processing. Specifically: 

1. We compute the differential entropy rate of any proper Gaussian AR “stationary ” vector process. 

2. We extend to AR “stationary ” vector processes the Pisarenko spectral estimation method given in [5, Theorem 2] for WSS

scalar processes. 

The rest of the paper is organized as follows. In Section 2 some preliminary results on block Toeplitz matrices are given.

In Section 3 we present a sufficient condition for stochastic vector processes to be AWSS and to have an asymptotically

stationary correlation structure. In Section 4 we give necessary and sufficient conditions for AR vector processes to be “sta-

tionary”. In Section 5 applications in information theory and in statistical signal processing of these necessary and sufficient 

conditions are presented. Finally, Section 6 is the conclusions section. 

2. Preliminary results 

2.1. The Barnett factorization 

We first review a result on block Hankel matrices called the Barnett factorization (see [6, Theorem 4.27] ). 

Theorem 1. Let 

{ H k } k ∈ Z = 

{
1 

2 π

∫ 2 π

0 

e −kωi H(ω ) dω 

}
k ∈ Z 

be the sequence of Fourier coefficients of a continuous 2 π-periodic function H : R → C 

N×N . Assume that H 0 is the N × N identity

matrix I N = (δ j,k ) 
N 
j,k =1 

. Suppose that H k is the N × N zero matrix 0 N×N for all k ∈ N . If n ∈ N then 

Z n (H) = K n (H)(�n (H)) n , 

where 

�n (H) = 

(
0 (n −1) N×N | I (n −1) N 

−H −n | −H −(n −1) . . . − H −1 

)
, 

and Z n (H) and K n (H) are the block Hankel matrices 

Z n ( H ) = 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 N×N · · · 0 N×N 0 N×N −H −n 

0 N×N · · · 0 N×N −H −n −H −( n −1 ) 

0 N×N · · · −H −n −H −( n −1 ) −H −( n −2 ) 
. . . . . 

. . . . 
. . . 

. . . 

−H −n · · · −H −3 −H −2 −H −1 

⎞ ⎟ ⎟ ⎟ ⎠ 

and 

K n ( H ) = 

⎛ ⎜ ⎜ ⎜ ⎝ 

H −( n −1 ) · · · H −2 H −1 I N 
H −( n −2 ) · · · H −1 I N 0 N×N 

H −( n −3 ) · · · I N 0 N×N 0 N×N 

. . . . . 
. . . . 

. . . 
. . . 

I N · · · 0 N×N 0 N×N 0 N×N 

⎞ ⎟ ⎟ ⎟ ⎠ 

, 

respectively. 

In [6] the proof of Theorem 1 is left as an exercise for the reader. For the convenience of the reader, we prove it in

Appendix A. We now review a result on the characteristic polynomial of the matrix �n (H) (see, e.g., [6, Theorem 4.23] and

[7, p. 14] ). 

Theorem 2. If { H k } k ∈ Z is as in Theorem 1 , n ∈ N , and τ ∈ C , then 

det (τ I nN − �n (H)) = det 

( 

τ n I N + 

n ∑ 

k =1 

τ n −k H −k 

) 

. 
2 
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The following result provides two simple properties of the matrix J n � I N , where J n is the n × n backward identity matrix

(that is, J n = (δ j+ k,n +1 ) 
n 
j,k =1 

) and � denotes the Kronecker product, i.e., 

J n � I N = 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 N×N · · · 0 N×N 0 N×N I N 
0 N×N · · · 0 N×N I N 0 N×N 

0 N×N · · · I N 0 N×N 0 N×N 

. . . . . 
. . . . 

. . . 
. . . 

I N · · · 0 N×N 0 N×N 0 N×N 

⎞ ⎟ ⎟ ⎟ ⎠ 

. 

Lemma 3. 

1. J n � I N is involutory. 

2. If A ∈ C 

nN×nN then 

[ A (J n � I N )] j,k = [ A ] j,n +1 −k ∈ C 

N×N 

and 

[(J n � I N ) A ] j,k = [ A ] n +1 − j,k ∈ C 

N×N 

for all j, k ∈ { 1 , . . . , n } . 
Proof. (1) (J n � I N ) 

2 = J 2 n � I 2 N = I n � I N = I nN . 

(2) If j, k ∈ { 1 , . . . , n } then 

[ A (J n � I N )] j,k = 

n ∑ 

h =1 

[ A ] j,h [ J n � I N ] h,k = 

n ∑ 

h =1 

[ A ] j,h [ J n ] h,k I N 

= 

n ∑ 

h =1 

[ J n ] h,k [ A ] j,h I N = 

n ∑ 

h =1 

[ J n ] h,k [ A ] j,h = [ A ] j,n +1 −k 

and 

[(J n � I N ) A ] j,k = 

n ∑ 

h =1 

[ J n � I N ] j,h [ A ] h,k = 

n ∑ 

h =1 

[ J n ] j,h I N [ A ] h,k = 

n ∑ 

h =1 

[ J n ] j,h [ A ] h,k = [ A ] n +1 − j,k . 

�

We finish this section by presenting the Barnett factorization for block Toeplitz matrices, which will be proved by using 

Theorems 1 and 2 , and Lemma 3 . 

Theorem 4. If { H k } k ∈ Z is as in Theorem 1 and n ∈ N then 

T n (H)(�n (H)) n = B n (H) , (1) 

where 

�n (H) = 

(
−H −1 . . . − H −(n −1) | −H −n 

I (n −1) N | 0 (n −1) N×N 

)
, 

and T n (H) and B n (H) are the block Toeplitz matrices 

T n (H) = (H j−k ) 
n 
j,k =1 

and 

B n (H) = 

⎛ ⎜ ⎜ ⎜ ⎝ 

−H −n 0 N×N 0 N×N · · · 0 N×N 

−H −(n −1) −H −n 0 N×N · · · 0 N×N 

−H −(n −2) −H −(n −1) −H −n · · · 0 N×N 

. . . 
. . . 

. . . 
. . . 

. . . 

−H −1 −H −2 −H −3 · · · −H −n 

⎞ ⎟ ⎟ ⎟ ⎠ 

, 

respectively. Moreover, 

det (τ I nN − �n (H)) = det 

( 

τ n I N + 

n ∑ 

k =1 

τ n −k H −k 

) 

∀ τ ∈ C . (2) 

Proof. From Theorem 1 and Lemma 3 we have 

T n (H)(�n (H)) n = T n (H)(J n � I N )((J n � I N )�n (H)(J n � I N )) 
n (J n � I N ) 
3
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= K n (H) 

(
(J n � I N ) 

(
−H −n | −H −(n −1) . . . − H −1 

0 (n −1) N×N | J n −1 � I N 

))n 

(J n � I N ) 

= K n (H)(�n (H)) n (J n � I N ) 

= Z n (H)(J n � I N ) 

= B n (H) . 

As �n (H) = (J n � I N )�n (H)(J n � I N ) and J n � I N is involutory, �n (H) and �n (H) are similar. Consequently, �n (H) and �n (H)

have the same characteristic polynomial. Therefore, applying Theorem 2 yields Equality (2) . �

2.2. On the companion matrix 

We begin this section by giving a result on natural powers of block lower triangular matrices. 

Lemma 5. Let m, n ∈ N with n > m . Consider A ∈ C 

m ×m , B ∈ C 

(n −m ) ×m , and C ∈ C 

(n −m ) ×(n −m ) . If q ∈ N then (
A | 0 m ×(n −m ) 

B | C 

)q 

= 

(
A 

q | 0 m ×(n −m ) ∑ q −1 

k =0 
C k BA 

q −1 −k | C q 

)
. (3) 

Proof. We proceed by induction on q . Since C 0 BA 

0 = I n −m 

BI m 

= B , Equality (3) is true for q = 1 . If we now assume that

Equality (3) is true for certain q ∈ N , then (
A | 0 m ×(n −m ) 

B | C 

)q +1 

= 

(
A 

q | 0 m ×(n −m ) ∑ q −1 

k =0 
C k BA 

q −1 −k | C q 

)(
A | 0 m ×(n −m ) 

B | C 

)
= 

(
A 

q +1 | 0 m ×(n −m ) ∑ q −1 

k =0 
C k BA 

q −k + C q B | C q +1 

)
= 

(
A 

q +1 | 0 m ×(n −m ) ∑ q 

k =0 
C k BA 

q −k | C q +1 

)
. 

�

If H is an N × N trigonometric polynomial of degree p ∈ N of the form 

H(ω) = I N + 

p ∑ 

k =1 

e −kωi H −k ∀ ω ∈ R , (4) 

the matrix 

�p (H) = 

(
−H −1 . . . − H −(p−1) | −H −p 

I (p−1) N | 0 (p−1) N×N 

)
is called the companion matrix of H. We finish this section by presenting a result on the spectral radius of the companion

matrix ρ(�p (H)) , which will be proved by using Theorem 4 and Lemma 5 . 

Theorem 6. If H is as in Equality (4) , then the following assertions are equivalent: 

1. ρ(�p (H)) < 1 . 

2. det 
(
I N + 

∑ p 

k =1 
z k H −k 

)
� = 0 when | z| ≤ 1 . 

3. H is invertible (that is, det (H(ω)) � = 0 for all ω ∈ R ) and {‖ (�n (H)) n ‖ 2 } is bounded with ‖ · ‖ 2 being the spectral norm. 

4. {‖ (T n (H)) −1 ‖ 2 } is bounded. 

5. H is invertible and {‖ (T n (H)) −1 − T n (H 

−1 ) ‖ F } is bounded with ‖ · ‖ F being the Frobenius norm. 

Proof. From Equality (2) we obtain 

det (τ I pN − �p (H)) = det 

( 

τ p I N + 

p ∑ 

k =1 

τ p−k H −k 

) 

= ( τ p ) 
N 

det 

( 

I N + 

p ∑ 

k =1 

τ−k H −k 

) 

(5) 

for all τ ∈ C \ { 0 } . 
(1) ⇔ (2) ρ(�p (H)) < 1 is equivalent to det (τ I pN − �p (H)) � = 0 when | τ | ≥ 1 . Hence, applying Equality (5) , ρ(�p (H)) < 1

if and only if det 
(
I N + 

∑ p 

k =1 
τ−k H −k 

)
� = 0 when | τ | ≥ 1 , or equivalently, det 

(
I N + 

∑ p 

k =1 
z k H −k 

)
� = 0 when 0 < | z| ≤ 1 . 

(1) ⇒ (3) The proof falls into three parts. 

Part 1: ∃ n 0 ∈ N such that ‖ (�p (H)) n ‖ 2 < 

(
1+ ρ(�p (H)) 

2 

)n ∀ n ≥ n 0 . 
4
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From [8, p. 299] we have 

ρ(�p (H)) ≤ n 
√ ‖ (�p (H)) n ‖ 2 ∀ n ∈ N 

and 

lim 

n →∞ 

n 
√ ‖ (�p (H)) n ‖ 2 = ρ(�p (H)) . 

Consequently, there exists n 0 ∈ N such that 

n 
√ ‖ (�p (H)) n ‖ 2 − ρ(�p (H)) = 

∣∣∣ n 
√ ‖ (�p (H)) n ‖ 2 − ρ(�p (H)) 

∣∣∣ < 

1 − ρ(�p (H)) 

2 

∀ n ≥ n 0 . 

Therefore, 

0 ≤ n 
√ ‖ (�p (H)) n ‖ 2 < 

1 + ρ(�p (H)) 

2 

∀ n ≥ n 0 . 

Part 2: {‖ (�n (H)) n ‖ 2 } is bounded. 

If n > p + 1 then �n (H) can be written as 

�n (H) = 

( 

�p (H) | 0 pN×(n −p) N 

0 N×(p−1) N | I N | 0 N×(n −p) N 

0 (n −p−1) N×pN | I (n −p−1) N | 0 (n −p−1) N×N 

) 

. 

Thus, applying Lemma 5 yields 

‖ (�n (H)) n ‖ 2 ≤ ‖ (�p (H)) n ‖ 2 + 

∥∥∥∥( 0 N×(n −p) N 

I (n −p−1) N | 0 (n −p−1) N×N 

)n ∥∥∥∥
2 

+ 

∥∥∥∥∥n −1 ∑ 

k =0 

(
0 N×(n −p) N 

I (n −p−1) N | 0 (n −p−1) N×N 

)k (
0 N×(p−1) N | I N 

0 (n −p−1) N×pN 

)
(�p (H)) n −1 −k 

∥∥∥∥∥
2 

≤ ‖ (�p (H)) n ‖ 2 + 

∥∥∥∥( 0 N×(n −p) N 

I (n −p−1) N | 0 (n −p−1) N×N 

)∥∥∥∥n 

2 

+ 

n −1 ∑ 

k =0 

∥∥∥∥( 0 N×(n −p) N 

I (n −p−1) N | 0 (n −p−1) N×N 

)∥∥∥∥k 

2 

∥∥∥∥(0 N×(p−1) N | I N 
0 (n −p−1) N×pN 

)∥∥∥∥
2 

∥∥(�p (H)) n −1 −k 
∥∥

2 

= ‖ (�p (H)) n ‖ 2 + 1 + 

n −1 ∑ 

k =0 

∥∥(�p (H)) n −1 −k 
∥∥

2 

= 1 + 

n ∑ 

k =0 

∥∥(�p (H)) k 
∥∥

2 

< 1 + 

n 0 −1 ∑ 

k =0 

∥∥(�p (H)) k 
∥∥

2 
+ 

n ∑ 

k = n 0 

(
1 + ρ(�p (H)) 

2 

)k 

= 1 + 

n 0 −1 ∑ 

k =0 

∥∥(�p (H)) k 
∥∥

2 
+ 

(
1+ ρ(�p (H)) 

2 

)n 0 

−
(

1+ ρ(�p (H)) 
2 

)n +1 

1 − 1+ ρ(�p (H)) 
2 

for all n > max { p + 1 , n 0 } . Since 

lim 

n →∞ 

1 + 

n 0 −1 ∑ 

k =0 

∥∥(�p (H)) k 
∥∥

2 
+ 

(
1+ ρ(�p (H)) 

2 

)n 0 

−
(

1+ ρ(�p (H)) 
2 

)n +1 

1 − 1+ ρ(�p (H)) 
2 

= 1 + 

n 0 −1 ∑ 

k =0 

∥∥(�p (H)) k 
∥∥

2 
+ 

(
1+ ρ(�p (H)) 

2 

)n 0 

1 − 1+ ρ(�p (H)) 
2 

, 

{ 

1 + 

∑ n 0 −1 

k =0 

∥∥(�p (H)) k 
∥∥

2 
+ 

(
1+ ρ(�p (H)) 

2 

)n 0 −
(

1+ ρ(�p (H)) 

2 

)n +1 

1 − 1+ ρ(�p (H)) 

2 

} 

is bounded, and hence, {‖ (�n (H)) n ‖ 2 } is bounded. 

Part 3: H is invertible. 

As | e ωi | = 1 for all ω ∈ R , e ωi is not an eigenvalue of �p (H) with ω ∈ R , and consequently, from Equality (5) we obtain 

0 � = det 
(
e ωi I pN − �p (H) 

)
= 

((
e ωi 
)p 
)N 

det 

( 

I N + 

p ∑ 

k =1 

(
e ωi 
)−k 

H −k 

) 

= e pNωi det (H(ω)) 

for all ω ∈ R . 
5 
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(3) ⇒ (4) Since { det (T n (H)) } = { 1 } , T n (H) is invertible for all n ∈ N . As H 

−1 : R → C 

N×N , which is defined as H 

−1 (ω) =
(H(ω)) −1 for all ω ∈ R , is continuous and 2 π-periodic, applying [3, Lemma 5.2] , [3, Lemma 5.4] , and Equality (1) yields 

‖ (T n (H)) −1 ‖ 2 ≤ ‖ (T n (H)) −1 − C n (H 

−1 ) ‖ 2 + ‖ C n (H 

−1 ) ‖ 2 

≤ ‖ (T n (H)) −1 (C n (H 

−1 )) −1 − I nN ‖ 2 ‖ C n (H 

−1 ) ‖ 2 + ‖ C n (H 

−1 ) ‖ 2 

= ‖ C n (H 

−1 ) ‖ 2 (1 + ‖ (T n (H)) −1 C n (H) − I nN ‖ 2 ) 

≤ σ1 (H 

−1 )(1 + ‖ (T n (H)) −1 C n (H) − I nN ‖ 2 ) 

= σ1 (H 

−1 )(1 + ‖ (T n (H)) −1 (C n (H) − T n (H)) ‖ 2 ) 

= σ1 (H 

−1 )(1 + ‖ (T n (H)) −1 (−B n (H)) ‖ 2 ) 

= σ1 (H 

−1 )(1 + ‖ (T n (H)) −1 B n (H) ‖ 2 ) 

= σ1 (H 

−1 )(1 + ‖ (�n (H)) n ‖ 2 ) ∀ n > 2 p 

with σ1 (H 

−1 ) = sup ω∈ [0 , 2 π ] ‖ (H(ω)) −1 ‖ 2 < ∞ and 

C n (G ) = (V n � I N ) 

(
δ j,k G 

(
2 π(k − 1) 

n 

))n 

j,k =1 

(V n � I N ) 
∗

for any continuous 2 π-periodic function G : R → C 

N×N , where V n is the n × n Fourier unitary matrix: 

V n = 

(
1 √ 

n 

e −
2 π( j−1)(k −1) 

n i 

)n 

j,k =1 

. (6) 

(4) ⇒ (1) The proof falls into three parts. 

Part 1: ρ(�p (H)) ≤ 1 . 

If n ≥ p, from Equality (2) we have 

det (τ I nN − �n (H)) = det 

( 

τ n I N + 

n ∑ 

k =1 

τ n −k H −k 

) 

= det 

( 

τ n I N + 

p ∑ 

k =1 

τ n −k H −k 

) 

= (τ n −p ) N det 

( 

τ p I N + 

p ∑ 

k =1 

τ p−k H −k 

) 

= (τ n −p ) N det (τ I pN − �p (H)) ∀ τ ∈ C , 

and therefore, ρ(�n (H)) = ρ(�p (H)) . Thus, applying Equality (1) yields 

(ρ(�p (H))) n = (ρ(�n (H))) n ≤ ‖ (�n (H)) n ‖ 2 = ‖ (T n (H)) −1 B n (H) ‖ 2 

≤ ‖ (T n (H)) −1 ‖ 2 ‖ B n (H) ‖ 2 = ‖ (T n (H)) −1 ‖ 2 ‖ B p (H) ‖ 2 ∀ n ≥ p. 

Since { (ρ(�p (H))) n } is bounded, ρ(�p (H)) ≤ 1 . 

Part 2: If ρ(�p (H)) = 1 then ∃ ω 0 ∈ R such that det (H(ω 0 )) = 0 . 

If ρ(�p (H)) = 1 then there exists ω 0 ∈ [0 , 2 π) such that e ω 0 i is an eigenvalue of �p (H) . Hence, from Equality (5) we

obtain 

0 = det (e ω 0 i I pN − �p (H)) = 

((
e ω 0 i 
)p 
)N 

det 

( 

I N + 

p ∑ 

k =1 

(
e ω 0 i 
)−k 

H −k 

) 

= e pNω 0 i det (H(ω 0 )) . 

As e pNω 0 i � = 0 , det (H(ω 0 )) = 0 . 

Part 3: H is invertible. 

From [3, Lemma 4.5] , for each n ∈ N there is a matrix A n ∈ C 

nN×pN such that 

T n (H H 

∗) = 

(
T n (H) | A n 

)(
T n (H) | A n 

)∗ = T n (H)(T n (H)) ∗ + A n A 

∗
n , 

where H 

∗ : R → C 

N×N is the continuous 2 π-periodic function defined as H 

∗(ω) = (H(ω)) ∗ for all ω ∈ R . Since H(ω)(H(ω)) ∗

is positive semidefinite for all ω ∈ R , applying [9, Proposition 3] we have that T n (H H 

∗) is positive semidefinite for all n ∈ N

and 

inf 
n ∈ N 

λnN (T n (H H 

∗)) = min 

ω∈ [0 , 2 π ] 
λN (H(ω)(H(ω)) ∗) . 

For each n ∈ N there is an eigenvector u n of T n (H H 

∗) associated with λnN (T n (H H 

∗)) satisfying that ‖ u n ‖ F = 1 . Therefore, 

λnN (T n (H H 

∗)) = λnN (T n (H H 

∗)) ‖ u n ‖ 

2 
F = λnN (T n (H H 

∗)) u 

∗
n u n = u 

∗
n (λnN (T n (H H 

∗)) u n ) = u 

∗
n T n (H H 

∗) u n 

= u 

∗
n T n (H)(T n (H)) ∗u n + u 

∗
n A n A 

∗
n u n = ‖ (T n (H)) ∗u n ‖ 

2 
F + ‖ A 

∗
n u n ‖ 

2 
F ≥ ‖ (T n (H)) ∗u n ‖ 

2 
F 

= 

(‖ (T n (H)) ∗u n ‖ F 

‖ u n ‖ F 

)2 

= 

( ‖ (T n (H)) ∗u n ‖ F 

‖ ((T n (H)) ∗) −1 (T n (H)) ∗u n ‖ F 

)2 

= 

( 

1 

‖ ((T n (H)) −1 ) ∗(T n (H)) ∗u n ‖ F ‖ (T n (H)) ∗u n ‖ F 

) 2 
6
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≥
(

1 

‖ ((T n (H)) −1 ) ∗‖ 2 

)2 

= 

1 

‖ (T n (H)) −1 ‖ 

2 
2 

≥ 1 (
sup m ∈ N ‖ (T m 

(H)) −1 ‖ 2 

)2 
∀ n ∈ N , 

and thus, 

min 

ω∈ R 
λN (H(ω)(H(ω)) ∗) = min 

ω∈ [0 , 2 π ] 
λN (H(ω)(H(ω)) ∗) = inf 

n ∈ N 
λnN (T n (HH 

∗)) ≥ 1 (
sup m ∈ N ‖ (T m 

(H)) −1 ‖ 2 

)2 
. 

Hence, 

det (H(ω)) det ((H(ω)) ∗) = det (H(ω)(H(ω)) ∗) = 

N ∏ 

k =1 

λk (H(ω)(H(ω)) ∗) 

≥ (λN (H(ω)(H(ω)) ∗)) N ≥ 1 (
sup m ∈ N ‖ (T m 

(H)) −1 ‖ 2 

)2 N 
> 0 ∀ ω ∈ R . 

(4) ⇒ (5) It is a direct consequence of [10, Lemma 3] . 

(5) ⇒ (4) From [3, Theorem 4.3] or [11, Theorem 4.1] we conclude that 

‖ (T n (H)) −1 ‖ 2 ≤ ‖ (T n (H)) −1 − T n (H 

−1 ) ‖ 2 + ‖ T n (H 

−1 ) ‖ 2 ≤ ‖ (T n (H)) −1 − T n (H 

−1 ) ‖ F + σ1 (H 

−1 ) 

for all n ∈ N . �

3. A sufficient condition for stochastic vector processes to be AWSS and to have an asymptotically stationary 

correlation structure 

We first extend to vector processes the concept of asymptotically stationary correlation structure given by Berger in [4, 

p. 223] . 

Definition 7. A constant mean stochastic vector process { y n } has an asymptotically stationary correlation structure if 

{ E (y n y ∗n + k )} is convergent for all k ∈ Z , where E stands for expectation and ∗ denotes conjugate transpose. 

We can now give a sufficient condition for stochastic vector processes to be AWSS and to have an asymptotically station-

ary correlation structure. 

Theorem 8. Consider a continuous 2 π-periodic function Y : R → C 

N×N and a constant mean stochastic N-dimensional process

{ y n } . Suppose that {‖ E (y n :1 y ∗n :1 )− T n (Y ) ‖ F } is bounded with 

y n :1 = 

⎛ ⎜ ⎜ ⎜ ⎝ 

y n 
y n −1 

y n −2 

. . . 

y 1 

⎞ ⎟ ⎟ ⎟ ⎠ 

∀ n ∈ N . 

Then 

1. { y n } is AWSS with (asymptotic) power spectral density (PSD) Y , i.e., {‖ E (y n :1 y ∗n :1 )‖ 2 } and {‖ T n (Y ) ‖ 2 } are bounded, and 

lim 

n →∞ 

‖ E 
(
y n :1 y 

∗
n :1 

)
− T n (Y ) ‖ F √ 

n 

= 0 . 

2. { y n } has an asymptotically stationary correlation structure. In fact, 

lim 

n →∞ 

E 
(
y n y 

∗
n + k 
)

= Y k ∀ k ∈ Z , 

where { Y k } k ∈ Z is the sequence of Fourier coefficients of Y . 

Proof. (1) As {‖ E (y n :1 y ∗n :1 )− T n (Y ) ‖ F } is bounded, 

lim 

n →∞ 

‖ E 
(
y n :1 y 

∗
n :1 

)
− T n (Y ) ‖ F √ 

n 

= 0 . 

From [3, Theorem 4.3] or [11, Theorem 4.1] , {‖ T n (Y ) ‖ 2 } is bounded. Thus, since 

‖ E ( y n :1 y 
∗
n :1 ) ‖ 2 ≤ ‖ E ( y n :1 y 

∗
n :1 ) − T n (Y ) ‖ 2 + ‖ T n (Y ) ‖ 2 ≤ ‖ E ( y n :1 y 

∗
n :1 ) − T n (Y ) ‖ F + ‖ T n (Y ) ‖ 2 

for all n ∈ N , {‖ E (y n :1 y ∗n :1 )‖ 2 } is also bounded. 
7 
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(2) We first consider the case in which k ≥ 0 . If n > k then 

n ∑ 

h = k +1 

‖ E(y h −k y 
∗
h ) − Y k ‖ 

2 
F = 

n ∑ 

h = k +1 

‖ [ E(y n :1 y 
∗
n :1 )] k + n −h +1 ,n −h +1 − [ T n (Y )] k + n −h +1 ,n −h +1 ‖ 

2 
F 

= 

n ∑ 

h = k +1 

‖ [ E(y n :1 y 
∗
n :1 ) − T n (Y )] k + n −h +1 ,n −h +1 ‖ 

2 
F 

≤ ‖ E(y n :1 y 
∗
n :1 ) − T n (Y ) ‖ 

2 
F . 

Consequently, 

{ ∑ n 
h = k +1 

∥∥E 
(
y h −k y 

∗
h 

)
− Y k 

∥∥2 

F 

} 
n>k 

is bounded. As 

{ ∑ n 
h = k +1 

∥∥E 
(
y h −k y 

∗
h 

)
− Y k 

∥∥2 

F 

} 
n>k 

is bounded and mono- 

tonically increasing, it is convergent. Therefore, 

lim 

h →∞ 

∥∥E 
(
y h −k y 

∗
h 

)
− Y k 

∥∥2 

F 
= 0 , 

or equivalently, 

lim 

h →∞ 

∥∥E 
(
y h −k y 

∗
h 

)
− Y k 

∥∥
F 

= 0 . 

Hence, 

lim 

n →∞ 

E 
(
y n y 

∗
n + k 
)

= lim 

h →∞ 

E 
(
y h −k y 

∗
h 

)
= Y k . 

We now consider the case in which k < 0 . From [9, Proposition 2] , Y (ω) is Hermitian for all ω ∈ R . Thus, 

lim 

n →∞ 

E 
(
y n y 

∗
n + k 
)

= lim 

n →∞ 

( E ( y n + k y 
∗
n ) ) 

∗ = 

(
lim 

n →∞ 

E ( y n + k y 
∗
n ) 

)∗
= 

(
lim 

h →∞ 

E 
(
y h y 

∗
h +(−k ) 

))∗
= Y 

∗
−k 

= 

(
1 

2 π

∫ 2 π

0 

e kωi Y (ω ) dω 

)∗
= 

1 

2 π

∫ 2 π

0 

(
e kωi Y (ω) 

)∗
d ω = 

1 

2 π

∫ 2 π

0 

e −kωi Y (ω) d ω = Y k . 

�

In Section 4 we show that the boundedness of {‖ E (y n :1 y ∗n :1 )− T n (Y ) ‖ F } is a necessary and sufficient condition for an

AR vector process { y n } to be AWSS with PSD Y . It should be mentioned that a necessary condition for a stochastic vector

process { y n } to be AWSS with PSD Y is that { E (y n :1 y ∗n :1 )− T n (Y ) } be zero-distributed (see [12, Theorem 2.16] ), but we will

not use this necessary condition in the present paper. 

4. Necessary and sufficient conditions for AR vector processes to be stationary 

The following lemma shows that the correlation matrices of an AR vector process can be written in terms of block

Toeplitz matrices. 

Lemma 9. Let { H k } k ∈ Z be as in Theorem 1 . Suppose that { w n } is a zero-mean N-dimensional process with 
{

E 
(
w n :1 w 

∗
n :1 

)}
=

{ T n (�) } , where � is an N × N positive definite matrix. Let { y n } be the zero-mean AR N-dimensional process given by 

y n = w n −
n −1 ∑ 

k =1 

H −k y n −k ∀ n ∈ N . (7) 

Then 

1. 
{

E 
(
y n :1 y 

∗
n :1 

)}
= 

{
(T n (H)) −1 T n (�)((T n (H)) −1 ) ∗

}
. 

2. inf n ∈ N λnN 

(
E 
(
y n :1 y 

∗
n :1 

))
> 0 with λnN 

(
E 
(
y n :1 y 

∗
n :1 

))
being the smallest eigenvalue of E 

(
y n :1 y 

∗
n :1 

)
for all n ∈ N . 

Proof. (1) Equality (7) can be rewritten as 

I N y n + 

n −1 ∑ 

k =1 

H −k y n −k = w n ∀ n ∈ N . 

Consequently, 

T n (H) y n :1 = w n :1 ∀ n ∈ N , 

and therefore, 

T n (H) y n :1 y 
∗
n :1 (T n (H)) ∗ = T n (H) y n :1 ( T n (H) y n :1 ) 

∗ = w n :1 w 

∗
n :1 ∀ n ∈ N . 

Hence, 

{ T n (H) E ( y n :1 y 
∗
n :1 ) (T n (H)) ∗} = { E ( w n :1 w 

∗
n :1 ) } = { T n (�) } . 
8
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As { det (T n (H)) } = { 1 } , T n (H) is invertible for all n ∈ N , and thus, 

{ E ( y n :1 y ∗n :1 ) } = 

{
(T n (H)) −1 T n (�)((T n (H)) ∗) −1 

}
= 

{
(T n (H)) −1 T n (�)((T n (H)) −1 ) ∗

}
. 

(2) Applying [3, Theorem 4.3] or [11, Theorem 4.1] yields 

λnN ( E ( y n :1 y 
∗
n :1 ) ) = 

1 

λ1 

((
E 
(
y n :1 y 

∗
n :1 

))−1 
) = 

1 ∥∥∥(E (y n :1 y ∗n :1 ))−1 
∥∥∥

2 

= 

1 

‖ 

(T n (H)) ∗(T n (�)) −1 T n (H) ‖ 2 

≥ 1 

‖ 

(T n (H)) ∗‖ 2 ‖ 

(T n (�)) −1 ‖ 2 ‖ 

T n (H) ‖ 2 

= 

λnN (T n (�)) 

‖ 

T n (H) ‖ 

2 
2 

= 

λN (�) 

‖ 

T n (H) ‖ 

2 
2 

≥ λN (�) 

(σ1 (H)) 2 
> 0 

for all n ∈ N , where σ1 (H) = sup ω∈ [0 , 2 π ] ‖ H(ω) ‖ 2 < ∞ . �

If H is a trigonometric polynomial of degree p, then { y n } is called an AR vector process of (finite) order p or an AR (p)

vector process. In the literature an AR (p) vector process is said to be “stationary ” if ρ(�p (H)) < 1 , or equivalently, if

det 
(
I N + 

∑ p 

k =1 
z k H −k 

)
� = 0 when | z| ≤ 1 (see, e.g., [1, Section 2.2.1] )). We now show that a necessary and sufficient condi-

tion for an AR (p) vector process to be “stationary ” is to be AWSS. 

Theorem 10. Let { y n } be as in Lemma 9 . Suppose that H is as in Equality (4) . Then the following assertions are equivalent: 

1. ρ(�p (H)) < 1 . 

2. det 
(
I N + 

∑ p 

k =1 
z k H −k 

)
� = 0 when | z| ≤ 1 . 

3. {‖ (T n (H)) −1 ‖ 2 } is bounded. 

4. H is invertible and {‖ E (y n :1 y ∗n :1 )− T n (H 

−1 �(H 

−1 ) ∗) ‖ F } is bounded. 

5. H is invertible and { y n } is AWSS with PSD H 

−1 �(H 

−1 ) ∗. 

6. { y n } is AWSS. 

7. {‖ E (y n :1 y ∗n :1 )‖ 2 } is bounded (that is, sup n ∈ N λ1 

(
E 
(
y n :1 y 

∗
n :1 

))
< ∞ ). 

Proof. From Theorem 6 the three first assertions are equivalent. 

(3) ⇒ (4) By Theorem 6 , H is invertible. Applying Lemma 9 and [3, Lemma 4.2] yields 

‖ E ( y n :1 y 
∗
n :1 ) − T n (H 

−1 �(H 

−1 ) ∗) ‖ F 

= ‖ (T n (H)) −1 T n (�)((T n (H)) −1 ) ∗ − T n (H 

−1 �(H 

−1 ) ∗) ‖ F 

≤ ‖ (T n (H)) −1 ‖ 2 ‖ T n (�)((T n (H)) −1 ) ∗ − T n (H) T n (H 

−1 �(H 

−1 ) ∗) ‖ F 

≤ ‖ (T n (H)) −1 ‖ 2 

(‖ T n (�)((T n (H)) −1 ) ∗ − T n (�(H 

−1 ) ∗) ‖ F + ‖ T n (�(H 

−1 ) ∗) − T n (H) T n (H 

−1 �(H 

−1 ) ∗) ‖ F 

)
≤ ‖ (T n (H)) −1 ‖ 2 

(‖ ((T n (H)) −1 ) ∗‖ 2 ‖ T n (�) − T n (�(H 

−1 ) ∗)(T n (H)) ∗‖ F 

+ ‖ T n (�(H 

−1 ) ∗) − T n (H) T n (H 

−1 �(H 

−1 ) ∗) ‖ F 

)
= ‖ (T n (H)) −1 ‖ 2 

(‖ (T n (H)) −1 ‖ 2 ‖ T n (�) − T n (�(H 

−1 ) ∗) T n (H 

∗) ‖ F 

+ ‖ T n (�(H 

−1 ) ∗) − T n (H) T n (H 

−1 �(H 

−1 ) ∗) ‖ F 

)
= ‖ (T n (H)) −1 ‖ 2 

(‖ (T n (H)) −1 ‖ 2 ‖ T n (�(H 

−1 ) ∗) T n (H 

∗) − T n (�(H 

−1 ) ∗H 

∗) ‖ F 

+ ‖ T n (H) T n (H 

−1 �(H 

−1 ) ∗) − T n (H H 

−1 �(H 

−1 ) ∗) ‖ F 

)
for all n ∈ N . As H and H 

∗ are trigonometric polynomials, from [10, Lemma 2] we obtain that {‖ T n (�(H 

−1 ) ∗) T n (H 

∗) −
T n (�(H 

−1 ) ∗H 

∗) ‖ F } and {‖ T n (H) T n (H 

−1 �(H 

−1 ) ∗) − T n (H H 

−1 �(H 

−1 ) ∗) ‖ F } are bounded, and consequently, {‖ E (y n :1 y ∗n :1 )−
T n (H 

−1 �(H 

−1 ) ∗) ‖ F } is bounded. 

(4) ⇒ (5) It is direct from Theorem 8 . 

(5) ⇒ (6) It is obvious. 

(6) ⇒ (7) It is direct from [3, Definition 7.1] . 

(7) ⇒ (3) Let � = U (δ j,k λk (�)) N 
j,k =1 

U 

−1 be an eigenvalue decomposition of the positive definite matrix �, where U is

unitary. Therefore, 
√ 

� = U 

(
δ j,k 

√ 

λk (�) 
)N 

j,k =1 
U 

−1 is also positive definite, and hence, ∥∥(T n (H)) −1 
∥∥

2 
= 

∥∥(T n (H)) −1 T n ( 
√ 

�( 
√ 

�) −1 ) 
∥∥

2 

= 

∥∥(T n (H)) −1 T n ( 
√ 

�) T n (( 
√ 

�) −1 ) 
∥∥

2 

≤
∥∥(T n (H)) −1 T n ( 

√ 

�) 
∥∥

2 

∥∥T n (( 
√ 

�) −1 ) 
∥∥

2 

= 

√ 

λ1 

(
(T n (H)) −1 T n ( 

√ 

�) T n (( 
√ 

�) ∗)((T n (H)) −1 ) ∗
)
λ1 

(
T n (( 

√ 

�) −1 ) T n ((( 
√ 

�) −1 ) ∗) 
)

= 

√ 

λ1 

(
(T n (H)) −1 T n (�)((T n (H)) −1 ) ∗

)
λ1 ( T n (( 

√ 

�) −1 (( 
√ 

�) ∗) −1 ) ) 
9
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= 

√ 

λ1 

(
E(y n :1 y 

∗
n :1 

) 
)
λ1 ( T n (�−1 ) ) 

= 

√ ‖ E(y n :1 y 
∗
n :1 

) ‖ 2 λ1 ((T n (�)) −1 ) 

= 

√ ‖ E(y n :1 y 
∗
n :1 

) ‖ 2 

λnN (T n (�)) 

= 

√ ‖ E(y n :1 y 
∗
n :1 

) ‖ 2 

λN (�) 
∀ n ∈ N . 

�

Theorem 10 shows in which sense the correlation matrices of an AR (p) “stationary ” vector process approach the correla- 

tion matrices of a WSS vector process. Specifically, Theorem 10 shows that a necessary and sufficient condition for an AR (p)

vector process { y n } to be “stationary ” is the boundedness of {‖ E (y n :1 y ∗n :1 )− T n (H 

−1 �(H 

−1 ) ∗) ‖ F } . 
We finish this section by showing that a necessary condition for an AR (p) vector process to be “stationary ” is to have an

asymptotically stationary correlation structure. 

Theorem 11. Let { y n } and H be as in Theorem 10 . If ρ(�p (H)) < 1 then { y n } has an asymptotically stationary correlation

structure. In fact, 

lim 

n →∞ 

E 
(
y n y 

∗
n + k 
)

= 

1 

2 π

∫ 2 π

0 

e −kωi (H(ω)) −1 �((H(ω)) −1 ) ∗dω ∀ k ∈ Z . 

Proof. It is a direct consequence of Theorems 8 and 10 . �

Theorem 11 was given by Berger in [4, Eq. (6.3.10)] for real AR(1) scalar processes. 

5. Applications 

Theorem 10 finds application in practical situations involving computations with large correlation matrices of AR (p) “sta- 

tionary ” vector processes. As examples of such practical applications in this section we obtain a novel result in information 

theory and another one in statistical signal processing. 

5.1. An application in information theory 

Kolmogorov computed the differential entropy rate of real Gaussian WSS scalar processes (see, e.g., [13, Section 12.5] ). 

We here compute the differential entropy rate of any proper 1 (complex) Gaussian AR (p) “stationary ” vector process { y n } ,
i.e., we compute lim n →∞ 

1 
n h (y n :1 ) , where h (y n :1 ) denotes the differential entropy of y n :1 for all n ∈ N . 

Theorem 12. Let { y n } and H be as in Theorem 10 . Suppose that { y n } is proper and Gaussian. If ρ(�p (H)) < 1 then 

lim 

n →∞ 

1 

n 

h (y n :1 ) = N log 2 (πe) + log 2 det (�) − 1 

π

∫ 2 π

0 

log 2 | det (H(ω )) | dω . 

Proof. By Theorem 10 , H is invertible and { y n } is AWSS with PSD H 

−1 �(H 

−1 ) ∗. Thus, applying Lemma 9 and [9, Proposi-

tion 2] yields 

0 < inf 
n ∈ N 

λnN (E(y n :1 y 
∗
n :1 )) ≤ min 

ω∈ [0 , 2 π ] 
λN ((H(ω)) −1 �((H(ω)) −1 ) ∗) 

≤ max 
ω∈ [0 , 2 π ] 

λ1 ((H(ω)) −1 �((H(ω)) −1 ) ∗) ≤ sup 

n ∈ N 
λ1 (E(y n :1 y 

∗
n :1 )) < ∞ . 

Consequently, from [3, Section 7.2] we obtain 

lim 

n →∞ 

1 

n 

h (y n :1 ) = N log 2 (πe) + 

1 

2 π

∫ 2 π

0 

log 2 det ((H(ω)) −1 �((H(ω)) −1 ) ∗) dω 

= N log 2 (πe) + 

1 

2 π

∫ 2 π

0 

log 2 ( det ((H(ω)) −1 ) det (�) det (((H(ω)) −1 ) ∗)) dω 

= N log 2 (πe) + 

1 

2 π

∫ 2 π

0 

log 2 ( det ((H(ω)) −1 ) det (�) det ((H(ω)) −1 ) ) dω 

= N log 2 (πe) + log 2 det (�) + 

1 

2 π

∫ 2 π

0 

log 2 
(| det ((H(ω)) −1 ) | 2 )dω 
1 We recall that a zero-mean stochastic N-dimensional process { y n } is proper if { E(y n :1 y 
� 
n :1 ) } = { 0 nN×nN } , where � denotes transpose. 

10 
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Fig. 1. Relation between the concepts of “stationary ”, AWSS, and asymptotically stationary correlation structure for AR (p) vector processes. 

 

 

 

 

= N log 2 (πe) + log 2 det (�) + 

1 

π

∫ 2 π

0 

log 2 

∣∣∣ 1 

det (H(ω)) 

∣∣∣dω 

= N log 2 (πe) + log 2 det (�) + 

1 

π

∫ 2 π

0 

log 2 
1 

| det (H(ω)) | dω. 

�

5.2. An application in statistical signal processing 

We now extend to AR (p) “stationary ” vector processes the Pisarenko spectral estimation method given in [5, Theo- 

rem 2] for WSS scalar processes. 

Theorem 13. Let { y n } and H be as in Theorem 10 . Consider a continuous strictly monotonic function g : (0 , ∞ ) → R . If

ρ(�p (H)) < 1 then 

lim 

n →∞ 

1 

2 π

∫ 2 π

0 

∥∥̂ P E(y n :1 y 
∗
n :1 

) ,g (ω) − (H (ω)) −1 �((H (ω)) −1 ) ∗
∥∥2 

F 
dω = 0 (8) 

with ̂ P E(y n :1 y 
∗
n :1 

) ,g : R → C 

N×N being the 2 π-periodic step function defined as 

̂ P E(y n :1 y 
∗
n :1 

) ,g (ω) = 

n ∑ 

k =1 

χ[ 2 π(k −1) 
n , 2 πk 

n ] (ω) g −1 ([(V n � I N ) 
∗g(E(y n :1 y 

∗
n :1 ))(V n � I N )] k,k ) , ω ∈ [0 , 2 π) , n ∈ N , 

where χ denotes characteristic function and V n is the n × n Fourier unitary matrix given in Equality (6) . 

Proof. By Theorem 10 , H is invertible and { y n } is AWSS with PSD H 

−1 �(H 

−1 ) ∗. Therefore, applying Lemma 9 and [9, Theo-

rem 5] yields Equality (8) . �

Observe that for each function g Theorem 13 provides a spectral estimation method, i.e., Theorem 13 provides a sequence 

of functions 

{ ̂ P E(y n :1 y 
∗
n :1 

) ,g 

} 
that approximates (or estimates) the PSD H 

−1 �(H 

−1 ) ∗ of the AR (p) “stationary ” vector process 

{ y n } . In particular, by taking g(x ) = x and g(x ) = 

1 
x in Theorem 13 , we have extended to AR (p) “stationary ” vector processes

the (averaged) periodogram method and the Capon spectral estimation method, respectively. 

6. Conclusions 

In the literature three different definitions have been presented to describe when AR (p) vector processes behave similarly 

to WSS vector processes. In this paper we have found the relation between these three concepts for AR (p) vector processes.

This relation, which had not been established until now, is shown in Fig. 1 . 
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Appendix A 

Proof of Theorem 1. It falls into seven parts. 

Part 1: [(�n (H)) n ] 1 ,k = [ K n (H)(�n (H)) n ] n,k ∈ C 

N×N ∀ k ∈ { 1 , . . . , n } . 
As [ K n (H)] n,k = [ I nN ] 1 ,k for all k ∈ { 1 , . . . , n } , we have 

[ K n (H)(�n (H)) n ] n,k = 

n ∑ 

h =1 

[ K n (H)] n,h [(�n (H)) n ] h,k = 

n ∑ 

h =1 

[ I nN ] 1 ,h [(�n (H)) n ] h,k = [(�n (H)) n ] 1 ,k 

for all k ∈ { 1 , . . . , n } . 
Part 2: [(�n (H)) n ] j,k = [(�n (H)) n +1 ] j−1 ,k ∈ C 

N×N for all j ∈ { 2 , . . . , n } and k ∈ { 1 , . . . , n } . 
Since 

[�n (H)] j,k = [ I nN ] j+1 ,k , j ∈ { 1 , . . . , n − 1 } , k ∈ { 1 , . . . , n } , (A.1)

we obtain 

[(�n (H)) n +1 ] j−1 ,k = 

n ∑ 

h =1 

[�n (H)] j−1 ,h [(�n (H)) n ] h,k = 

n ∑ 

h =1 

[ I nN ] j,h [(�n (H)) n ] h,k = [(�n (H)) n ] j,k 

for all j ∈ { 2 , . . . , n } and k ∈ { 1 , . . . , n } . 
Part 3: [ K n (H)(�n (H)) n ] j,k = H −(n − j) [ K n (H)(�n (H)) n ] n,k + 

∑ n 
h =1 [ K n (H)(�n (H)) n ] j+1 ,h [�n (H)] h,k for all j ∈ { 1 , . . . , n − 1 }

and k ∈ { 1 , . . . , n } . 
As 

[ K n (H)] j,k = 

{
H j+ k −n −1 if j + k ≤ n + 1 , 

0 N×N if j + k > n + 1 , 

for all j, k ∈ { 1 , . . . , n } , we have 

[ K n (H)(�n (H)) n ] j,k = 

n ∑ 

h =1 

[ K n (H)] j,h [(�n (H)) n ] h,k 

= 

n − j+1 ∑ 

h =1 

[ K n (H)] j,h [(�n (H)) n ] h,k + 

n ∑ 

h = n − j+2 

[ K n (H)] j,h [(�n (H)) n ] h,k 

= 

n − j+1 ∑ 

h =1 

H j+ h −n −1 [(�n (H)) n ] h,k ∀ j, k ∈ { 1 , . . . , n } . 

Consequently, from Parts 1 and 2 we obtain 

[ K n (H)(�n (H)) n ] j,k 

= 

n − j+1 ∑ 

h =1 

H j+ h −n −1 [(�n (H)) n ] h,k 

= H j−n [(�n (H)) n ] 1 ,k + 

n − j+1 ∑ 

h =2 

H j+ h −n −1 [(�n (H)) n ] h,k 

= H −(n − j) [ K n (H)(�n (H)) n ] n,k + 

n − j+1 ∑ 

h =2 

H j+ h −n −1 [(�n (H)) n +1 ] h −1 ,k 

= H −(n − j) [ K n (H)(�n (H)) n ] n,k + 

n − j+1 ∑ 

h =2 

H j+ h −n −1 

n ∑ 

r=1 

[(�n (H)) n ] h −1 ,r [�n (H)] r,k 

= H −(n − j) [ K n (H)(�n (H)) n ] n,k + 

n − j ∑ 

s =1 

H j+ s −n 

n ∑ 

r=1 

[(�n (H)) n ] s,r [�n (H)] r,k 

= H −(n − j) [ K n (H)(�n (H)) n ] n,k + 

n −( j+1)+1 ∑ 

s =1 

H ( j+1)+ s −n −1 

n ∑ 

r=1 

[(�n (H)) n ] s,r [�n (H)] r,k 

= H −(n − j) [ K n (H)(�n (H)) n ] n,k + 

n ∑ 

r=1 

( 

n −( j+1)+1 ∑ 

s =1 

H ( j+1)+ s −n −1 [(�n (H)) n ] s,r 

) 

[�n (H)] r,k 
12 
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= H −(n − j) [ K n (H)(�n (H)) n ] n,k + 

n ∑ 

r=1 

[ K n (H)(�n (H)) n ] j+1 ,r [�n (H)] r,k 

for all j ∈ { 1 , . . . , n − 1 } and k ∈ { 1 , . . . , n } . 
Part 4: [ Z n (H)] j,k = H −(n − j) [ Z n (H)] n,k + 

∑ n 
h =1 [ Z n (H)] j+1 ,h [�n (H)] h,k for all j ∈ { 1 , . . . , n − 1 } and k ∈ { 1 , . . . , n } . 

Since 

[ Z n (H)] j,k = 

{
−H j+ k −2 n −1 if j + k ≥ n + 1 , 

0 N×N if j + k < n + 1 , 

for all j, k ∈ { 1 , . . . , n } and 

[�n (H)] n,k = [ Z n (H)] n,k ∀ k ∈ { 1 , . . . , n } , (A.2) 

applying Equality (A.1) yields 

H −(n − j) [ Z n (H)] n,k + 

n ∑ 

h =1 

[ Z n (H)] j+1 ,h [�n (H)] h,k 

= H −(n − j) [ Z n (H)] n,k + 

n −1 ∑ 

h =1 

[ Z n (H)] j+1 ,h [ I nN ] h +1 ,k + [ Z n (H)] j+1 ,n [�n (H)] n,k 

= H −(n − j) [ Z n (H)] n,k + 

n −1 ∑ 

h =1 

[ Z n (H)] j+1 ,h [ I nN ] h +1 ,k − H j−n [ Z n (H)] n,k 

= 

n −1 ∑ 

h =1 

[ Z n (H)] j+1 ,h [ I nN ] h +1 ,k 

= 

{
[ Z n (H)] j+1 ,k −1 if k � = 1 , 

0 N×N if k = 1 , 

= [ Z n (H)] j,k , j ∈ { 1 , . . . , n − 1 } , k ∈ { 1 , . . . , n } . 
Part 5: If q ∈ { 1 , . . . , n − 1 } then [(�n (H)) q ] 1 ,k = [ I nN ] q +1 ,k ∈ C 

N×N ∀ k ∈ { 1 , . . . , n } . 
We proceed by induction on q . From Equality (A.1) , [

( �n ( H ) ) 
q 
]

1 ,k 
= [ I nN ] q +1 ,k ∀ k ∈ { 1 , . . . , n } (A.3) 

is true for q = 1 . We now assume that Equality (A.3) is true for certain q ∈ { 1 , . . . , n − 2 } , and applying Equality (A.1) we

have 

[(�n (H)) q +1 ] 1 ,k = [(�n (H)) q �n (H)] 1 ,k = 

n ∑ 

h =1 

[(�n (H)) q ] 1 ,h [�n (H)] h,k 

= 

n ∑ 

h =1 

[ I nN ] q +1 ,h [�n (H)] h,k = [�n (H)] q +1 ,k = [ I nN ] q +2 ,k ∀ k ∈ { 1 , . . . , n } . 

Part 6: [ K n (H)(�n (H)) n ] n,k = [ Z n (H)] n,k ∈ C 

N×N ∀ k ∈ { 1 , . . . , n } . 
From Parts 1 and 5, and Equality (A.2) we obtain 

[ K n (H)(�n (H)) n ] n,k = [(�n (H)) n ] 1 ,k = 

n ∑ 

h =1 

[(�n (H)) n −1 ] 1 ,h [�n (H)] h,k 

= 

n ∑ 

h =1 

[ I nN ] n,h [�n (H)] h,k = [�n (H)] n,k = [ Z n (H)] n,k ∀ k ∈ { 1 , . . . , n } . 

Part 7: K n (H)(�n (H)) n = Z n (H) . 

It is a direct consequence of Parts 3, 4, and 6. �

References 

[1] G.C. Reinsel, Elements of Multivariate Time Series Analysis, Springer, 1993 . 

[2] R.M. Gray, Toeplitz and circulant matrices: a review, Foundations and Trends in Communications and Information Theory 2 (3) (2006) 155–239 . 
[3] J. Gutiérrez-Gutiérrez, P.M. Crespo, Block Toeplitz matrices: asymptotic results and applications, Foundations and Trends in Communications and In- 

formation Theory 8 (3) (2011) 179–257 . 
[4] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression, Prentice-Hall, 1971 . 

[5] V.F. Pisarenko, On the estimation of spectra by means of non-linear functions of the covariance matrix, Geophysical Jounal of the Royal Astronomical
Society 28 (1972) 511–531 . 
13 

http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0001
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0002
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0003
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0005


J. Gutiérrez-Gutiérrez, Í. Barasoain-Echepare, M. Zárraga-Rodríguez et al. Applied Mathematics and Computation 445 (2023) 127824 

 

 

[6] S. Barnett, Polynomials and Linear Control Systems, Marcel Dekker, 1983 . 
[7] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Academic Press, 1982 . 

[8] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990 . 
[9] J. Gutiérrez-Gutiérrez, A modified version of the Pisarenko method to estimate the power spectral density of any asymptotically wide sense stationary

vector process, Appl Math Comput 362 (2019) . article no. 124526 
[10] J. Gutiérrez-Gutiérrez, M. Zárraga-Rodríguez, X. Insausti, On the asymptotic optimality of a low-complexity coding strategy for WSS, MA, and AR vector

sources, Entropy 22 (2020) . article no. 1378 

[11] P. Tilli, Singular values and eigenvalues of non-Hermitian block Toeplitz matrices, Linear Algebra Appl 272 (1998) 59–89 . 
[12] G. Barbarino, C. Garoni, S. Serra-Capizzano, Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case, Electron. 

Trans. Numer. Anal. 53 (2020) 28–112 . 
[13] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, 2006 . 
14 

http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0006
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0007
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0008
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0009
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0009
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0010
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0010
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0011
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0012
http://refhub.elsevier.com/S0096-3003(22)00892-X/sbref0013

	Necessary and sufficient conditions for AR vector processes to be stationary: Applications in information theory and in statistical signal processing
	1 Introduction
	2 Preliminary results
	2.1 The Barnett factorization
	2.2 On the companion matrix

	3 A sufficient condition for stochastic vector processes to be AWSS and to have an asymptotically stationary correlation structure
	4 Necessary and sufficient conditions for AR vector processes to be stationary
	5 Applications
	5.1 An application in information theory
	5.2 An application in statistical signal processing

	6 Conclusions
	Acknowledgements
	Appendix A
	References


