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Abstract: Thromboinflammation or immunothrombosis is a concept that explains the existing link
between coagulation and inflammatory response present in many situations, such as sepsis, venous
thromboembolism, or COVID-19 associated coagulopathy. The purpose of this review is to provide
an overview of the current data regarding the mechanisms involved in immunothrombosis in order
to understand the new therapeutic strategies focused in reducing thrombotic risk by controlling
the inflammation.
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1. Introduction

The activation of the coagulation cascade represents a natural mechanism of defense,
critical to keep physiological hemostasis in response to an infection or tissue damage
in order to avoid blood loss. Nowadays, coagulation is considered a key player in the
immune response, as it could prevent both viral and bacterial infections working in a
bidirectional way with innate immune system [1]. However, in pathological situations,
excessive activation of the coagulation cascade may occur, leading to a disseminated
intravascular coagulopathy (DIC) and other thrombotic processes [2,3]. The link that
connects both abnormal coagulation activation and innate immunity was first named
immunothrombosis by Engelmann and Massberg in 2013 [4].

Classically, the coagulation cascade was described to be composed of two pathways,
intrinsic and extrinsic, leading to a common final pathway, that originates the fibrin blood
clot which is able to stop the bleeding that occurs after a vascular lesion. The intrinsic
pathway begins with factor XII activation due to the interaction of blood with artificial or
pathological surfaces that are negatively charged, such as DNA, RNA, polyphosphates,
or atherosclerotic plaque components. The extrinsic pathway begins with tissue factor
(TF) that makes a complex with factor VII at subendothelial level or over circulating im-
mune cell membranes, as monocytes. However, in pathological situations, the pathogen
recognition by immune cells amplifies procoagulant TF activity around 100 times [5]. Both
acute and chronic inflammatory diseases promote dysregulation of hemostasis leading
to aberrant clot formation, which is now termed immunothrombosis. Therefore, inflam-
mation and coagulation are closely connected, what explains that immunothrombosis or
thromboinflammation will characterize many clinical situations, such as sepsis or DIC,
but also myocardial infarction, stroke, venous thromboembolism, or COVID-19-associated
coagulopathy [3,4,6]. Molecular mechanisms involved in this process lead to TF activation
and release and inflammasome activation [7].

2. Tissue Factor Initiates Immunothrombosis

TF is a 47 kd membrane receptor glycoprotein that plays an important role in co-
agulation activation in response to infectious agents or tissue injury. It is expressed in
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blood vessel adventitia and in circulating cells, such as monocytes and neutrophils [5]. In
the physiological hemostasis, the exposed subendothelium releases TF to the blood flow.
TF then interacts with factor VII and activated factor VII (FVIIa) forming a complex that
activates the extrinsic pathway of coagulation and finally it is degraded by its natural
inhibitor: tissue factor pathway inhibitor (TFPI). In infectious scenarios, pathogen asso-
ciated molecular patterns (PAMPS), such as bacterial lipopolysaccharides, are detected
by pattern recognition receptors (PRRs), such as TLR4, leading to TF induction at the
mRNA level. This process takes place through NF-Kβ transcription factor activation in
monocytes, neutrophils, endothelial, and epithelial cells [5,8]. Along this process, TF is
decrypted due to lipidic membrane conformational changes, enhancing its procoagulant
activity. Decryption process is needed to activate the TF cofactor in order to allow the
binding of TF to FVIIa and FX. In vitro models show a faster union of decrypted TF to
FVII/FVIIa compared to cryptic TF, but also demonstrate that decrypted TF can cleave
both a peptidyl substrate and FX while cryptic TF can only cleave peptidyl substrate [9].
Additionally, there are two essential steps in the decryption process: the formation of
a disulfide bond between unpaired cysteine residues 186 and 209 in cryptic TF and the
exposure of phosphatidylserine on the cell surface of endothelial cells, neutrophils, and
monocytes [9].

Then, immune cells release decrypted TF in a process called pyroptosis that provokes
leaks in the cellular membrane and activates the inflammasome through the caspase
pathways [7,10]. Following its release as extracellular vesicles, TF forms a high affinity
complex with activated factor VII that leads to the activation of factor X to Xa, IX to IXa,
and finally generating thrombin and the conversion of fibrinogen to fibrin. Additionally,
thrombin activates platelets via protease activated receptors (PARs) that have a critical
role in inflammatory processes through cytokine release [11,12] (Figure 1). Fibrin clot
formation is enhanced by the presence of activated platelets and neutrophils that release
extracellular traps (NETs) in a process called NETosis [13,14]. NETs spread thrombosis by
retaining TF and extracellular vesicles, inducing endothelial dysfunction, and activating
the intrinsic coagulation pathway due to its negatively charged surface [15]. In summary,
PAMPs recognition by PRRs leads to TF release and decryption that increased its activity
beginning the immunothrombosis/thromboinflammation process.
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Figure 1. Molecular mechanism implied in immunothrombosis/thromboinflammation. Following
the immune cell’s activations, TF decryption is induced leading to the TF release from these immune
cells and also pyroptosis through the NLRP3 inflammasome. This process induces thrombin gen-
eration that provokes platelet activation and the NETosis process increasing fibrin formation and
proinflammatory cytokine release.
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Additionally, platelet adhesion to injury site turns platelets into an active state that
may act as a beginner for the TF alternative pathway [16].

In summary, published data show that TF, together with monocytes or neutrophils, is
a crucial player during immunothrombosis as it can activate platelets [16].

3. Inflammasome Activation

Inflammasomes are molecular platforms conformed by several proteins that regulate
the inflammatory response as antimicrobial mechanism defense. The presence of PAMPs
and other dangerous molecular signals (DAMPs) activate caspases and induces pyroptosis
and cellular death through gasdermins, which are the executors of inflammation and cell
death. The so called non-canonical inflammasome activation is produced as a consequence
of caspase-11 induction by LPS-associated gram-negative bacteria in different immune
and nonimmune cells, including neutrophils, macrophages, and endothelial cells [17].
The caspase-11 activation promotes gasdermin D proteolysis, which provokes cell lysis
named pyroptosis, which is a critical antibacterial defense mechanism that avoids pathogen
dissemination [7,18,19].

Caspase-1 leads to the canonical activation of the inflammasome and provokes NLRP3
activation and IL-1β and IL-18 cytokine release. Caspase-1 is activated in the presence
of several pathogens and at the same time activates gasdermin D, this activation pro-
motes pyroptosis that originates in gaps in the cellular membrane, increasing TF-related
procoagulant activity [8] (Figure 1).

Recent experimental and clinical studies have demonstrated that the canonical and
non-canonical activation of the inflammasome are crucial for TF release by immune
cells [17]. In this sense, several reports show that caspase-1 is present in human macrophages
during sepsis. Moreover, Wu et al. [7] showed that canonical (by E. coli proteins) and non-
canonical (by LPS) macrophage activation of the inflammasome induce TF release through
pyroptosis, enhancing thrombosis and mortality in experimental models, while caspase-1
and 11 deletions block TF release [7]. Another recent study showed that caspase-11 and
gasdermin D activation are essential for LPS related thrombosis, demonstrating that gas-
dermin D increases procoagulant TF activity through phosphatidylserine externalization,
a membrane phospholipid that favors TF decryption and also catalyzed the activation of
coagulation proteins, which may also contribute to an increased thrombotic profile [20].
Finally, in a mouse experimental model, caspase-1 and gasdermin D deletions protected
the animals from thrombosis [21].

In conclusion, clinical and experimental evidence establish cellular death mediated by
inflammasomes as a key trigger for immunothrombosis and microvascular thrombosis [22].
Two key signals are required for the coagulation activation mediated by the inflammasome:
induction of TF protein and inflammatory caspase activation that induce TF release through
pyroptosis [23] (Figure 1).

Recently, new mechanisms involved in the immunothrombosis process have been pro-
posed. One of them is related to the STING protein (stimulator of the interferon response
cGAMP interactor 1), expressed in fibroblasts and endothelial cells which responds to
PAMPs and DAMPs. The STING protein has been previously implicated in the inflamma-
tory response in sepsis-associated coagulopathy in experimental models. STING favors the
procoagulant response through the regulation of the calcium release and gasdermin D pro-
teolysis, facilitating TF release [24]. Another mechanism involves HMGB1 (high-mobility
group box protein 1), a DAMPs that is increased in patients with sepsis or trauma and also
in animals treated with LPS. In vitro, HMGB1 stimulates TF expression and release, con-
tributing to sepsis induced by gram-negative bacteria after LPS linkage. HMGB1 transports
LPS to the cytosol where it induces pyroptosis through the non-canonical inflammation
activation mediated by caspase-11 [25].
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4. Role of NETs in Immunothrombosis

NETs are extracellular structures composed of granule, nuclear, and mitochondrial
constituents assembled on a scaffold of decondensed chromatin with antimicrobial proteins
and peptides [26,27]. NETs act as a scaffold for platelets, red blood cells, extracellular
vesicles, VWF, and TF [28]. NETs play a crucial role in host defense and pathogen clearance
during infection [29]; however, dysregulation of NETs can lead to autoimmune, inflamma-
tory, and pathological thrombotic disorders [26–28]. Histone proteins, that are one of the
constituents of NETs (in addition to DNA), are potent DAMP molecules also capable of
initiating a positive inflammatory feedback loop [26].

Nucleic acids activate coagulation, with RNA binding both factors XII and XI in the
intrinsic pathway. RNA is present in fibrin-rich arterial thrombi. Furthermore, histones in-
crease thrombin generation in a platelet-dependent manner. Histones activate platelets, and
platelet activation, in turn, promotes coagulation, leading to platelet-rich microthrombi for-
mation. Within thrombi formed in vivo, NETs colocalize with VWF [30]. Finally, NET fibers
contain various other factors that can render them procoagulant, such as serine proteases
that inhibit TFPI, and in addition, TF has been shown to be deposited on NETs [26,28].

It is interesting to note that although platelet and neutrophil interplay is crucial,
depending on the original stimuli platelets, they are not always needed [31]. In fact, gram-
negative bacteria are recognized by platelet LPS-TLR4 binding, inducing NET formation
due to activated platelet interactions with neutrophils through surface proteins (CD62P,
GPIbα and integrin αIIbβ3) [31–34]. However, LPS stimulation can also directly form NETs
in the absence of platelets; as it occurs in some viral infections, such as COVID-19, that
does not need platelet interplay to activate NETs, since neutrophils can recognize virus
RNA through the TLR receptor, including the intracellular receptors, such as TLR7, TLR8,
and TLR9. Following virus recognition, specific TLRs activate PAD 4 directly [35]. When
this process occurs without control, thrombus formation appears and, if chronified, it can
lead to tissue damage resulting in fibrosis, organ dysfunction, and death [26].

5. Role of the Von Willebrand Factor in Immunothrombosis

The von Willebrand Factor (VWF) is a glycoprotein release by endothelial cells or
platelets with an important role in hemostasis [36]. Furthermore, leukocyte recruitment
is mediated by VWF [37]. It is usually secreted in the form of ultra-large VWF (UL-VWF)
multimers that are cleaved by ADAMTS13, a metalloproteinase, regulating its size and
activity [38].

It is described that VWF is colocalized with NETs in venous and arterial thrombosis [39,40],
inducing a proinflammatory and prothrombotic state. Some studies showed that NETs
increased cytokines levels, such as IL-6 and reduce ADAMTs13 activity [30,41], leading
to an increase in UL-VWF. In fact, NET-VWF binding can recruit platelets and leukocytes,
thus playing a role in thrombotic microangiopathies, ischemic stroke, and COVID-19
disease [30].

6. Infectious Disease-Induced Immunothrombosis

Several studies have addressed the close interaction between sepsis and coagulopathy.
Sepsis is characterized by a dysregulated immune system with an excessive production of
cytokines, in response to infectious stimuli [42]. This dysregulation can lead to endothelial
damage and upregulation of the TF expression, not only in endothelial cells, but also in other
circulating cells [43]. During bacterial infections, non-canonical inflammasome activation is
crucial in the cell surface TF release [44]. Additionally, pathogen and cytokines activate the
endothelium, producing a prothombotic state promoting multimeric chains of UL-VWF
release to endothelial cell surface where they will bind platelets [45]. Usually, UL-VWF is
broken by ADAMTs13 into small multimers, however, in patients with sepsis, ADAMTs13 is
reduced, being unable to break these long structures which originate in a string surrounded
by platelets and neutrophils that are the bases for microthrombi formation [46]. Finally,
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during sepsis, several anticoagulant proteins are reduced, such as protein C, protein S, and
antithrombin, favoring thrombin generation and fibrin formation [47].

There is growing interest in the immunothrombosis role in SAR-COV-2 (COVID-19)
infection complications. Previously, in vitro studies demonstrated TF induction and de-
cryption in response to different viruses, such as herpes simplex, Ebola, and HIV associated
with different coagulopathy degrees and thrombosis [48,49]. However, there is a gap in the
knowledge about the exact mechanism of TF induction and release upon viral infections [17].

It is known that COVID-19 induces an important coagulopathy in which multiple
components are involved in immunothrombosis and play an essential role [50,51]. First,
infected endothelial cells release VWF, attracting local neutrophils and platelets that pro-
mote inflammation and coagulation [17]. Moreover, COVID-19 provokes endothelial cell
damage and apoptosis, leading to a decrease in antithrombotic activity [52]. In addition,
both activated neutrophils and platelets are critical in NETs release which capture TF and
TF positive micro-vesicles, triggering coagulation cascade activation [17,53]. A severe
COVID-19 infection induces a hyperactivation of the immune system that leads to an
uncontrolled release of cytokines, so-called cytokine storm. Among these cytokines, IL-6,
interferon-γ (INF-γ), and IL-2 increase platelet production and TF expression on endothe-
lial cells and monocytes. Moreover, IL-2 increased the procoagulant state by decreasing
fibrinolysis [54]. Finally, COVID-19 induces canonical NLRP3 and non-canonical caspase-11
activation of the inflammasome [17,50,51]. In the end, a COVID-19 infection should be con-
sidered as an abnormal/dysregulated immunothrombosis syndrome involving pulmonary
microcirculation [17,52].

7. Thromboinflammatory Conditions
7.1. Arterial Diseases and Immunothrombosis

The activating interplay of thrombosis and inflammation (thromboinflammation) has
also been established as a major underlying pathway driving cardiovascular diseases,
such as myocardial infarction and stroke. Innate immunity and platelet crosstalk pro-
mote plaque formation and rupture, also depending on the interaction of UL-VWF with
NETs [54]. Decorated with histones and cytoplasmic and granular proteins, NETs exert
cytotoxic, immunogenic, and prothrombotic effects accelerating disease progression. The
inflammasome, through generation of active caspase-1, causes the release of the important
vascular effector cytokine IL-1β. IL-1β, in turn supports the endothelial expression of
adhesion molecules, such as E-selectin, favoring leukocyte recruitment. Activated platelets
also stimulate TF synthesis and its release in vesicles from monocytes leading to thrombin
generation and fibrin formation [54]. Additionally, NETs activate a complement system
leading to increased endothelial damage and upregulate platelet activation [2].

Finally, clonal hematopoiesis (CHIP) is related to inflammation and cardiovascular
diseases. CHIP mutations provoke a pro-inflammatory ambient that produce an increase
in the thrombotic risk and favor plaque formation. These mutations produce functional
alterations in neutrophils showing a prothrombotic profile. Among them, JAK2 mutations
increase thrombotic risk through PAD4-dependent NETosis [55].

7.2. Autoimmune Diseases

Autoimmune disorders, such as inflammatory bowel disease (IBD) and systemic
lupus erythematous (SLE), are associated with the increased risk of venous thromboem-
bolism [43].

IBD presents an increase in proinflammatory immune cells (lymphocytes, neutrophils,
and monocytes) and cytokines. During flares, IBD patients increase procoagulant factors
and reduce antifibrinolytic proteins [56,57]; moreover, procoagulant TF-MPs are shed
by platelets and leukocytes that may stimulate NETosis [58]. In addition, the protein C
pathway is an important regulator of mucosal homeostasis maintaining endothelial cell
function regulating inflammatory responses, leading to spontaneous gut inflammation
when the protein C pathway is altered [59].
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Patients with SLE characteristically present antiphospholipid antibodies that are re-
lated with the increased thrombotic risk in these patients [60]. However, they also present
endothelial dysfunction, fibrinogen and cell adhesion molecules increase [61]. Furthermore,
SLE patients have a reduced NETs clearance with an altered immune profile [62]. Finally,
interaction between antiphospholipid antibodies and monocyte receptors facilitates TF
decryption and promote coagulation [63].

8. Immunothrombosis as a New Therapeutical Target

Standard antithrombotic therapy with anticoagulants is highly effective, but it is asso-
ciated with increased hemorrhagic complications because fibrin is an essential component
of the physiological hemostasis [64]. Usually, they exert their effect, decreasing coagu-
lation factor activities [17]. Several studies have shown that hemostasis can be spared
with effective thromboprotection, among them it has been demonstrated that a modified
heparin without anticoagulant activity blocks HMGB1, inhibiting the caspase-11 mediated
pyroptosis, preventing sepsis, thrombosis, and mortality in mice, without increasing hemor-
rhagic risk [65]. It is possible that coagulopathy may be better prevented by inflammasome
inhibition of the TF induction rather than by the coagulation factor inhibition [17,23].

New approaches are needed to improve unbalanced hemostasis without increasing
the bleeding risk, we summarize in Table 1 the different therapeutic approaches for im-
munothrombosis:

(a) Targeting coagulation

Some treatments usually used as an anticoagulant and antiplatelet may exhibit dif-
ferent effects modulating immunothrombosis. In fact, heparin, one of the most common
anticoagulants, at high concentrations, is able to degrade NETs and also neutralize his-
tones in blood. Furthermore, antiplatelet drugs, such as aspirin or ticagrelor, inhibit NET
release [26].

(b) Targeting NETs

Several targeted therapies, focused on different steps of NETosis, have been explored
in recent years. DNase is a nuclease that breaks down the NETs DNA backbone; however,
to exert its effects, it needs the addition of fibrinolytic agents. To date, DNase 1 has been
approved as a nebulized treatment in cystic fibrosis and there are several trials assessing
the efficacy and safety of intravenous DNases administration after thrombectomy [26].

Another target to disrupt NET formation and prevent its release is the enzyme PAD4
which is essential in the early stage of NET formation [66]. Recently, PAD inhibition has been
gaining interest and several inhibitors have been developed; initially pan-PAD inhibitors
were created, such as compounds derived from benzol-arginine; however, even though
there are promising results in preclinical trials, some unwanted side-effects in human have
appeared, preventing its used in clinical practice. Lately, directed PAD inhibitors, such as
PAD4 inhibitor (GSK199 and GSK484), seem to offer better results, inhibiting PAD4 with
high specificity [67].

(c) Targeting inflammation

The question that should be raised is: may the inflammasome and pyroptosis inhibition
be a new strategy for immunothrombosis treatment? In this regard, several JAK pathway in-
hibitors, such as baricitinib, ruxolitinib, or tofacitinib, may reduce immunothrombosis [17].
Likewise, several STING inhibitors have been recently identified, such as nitrofurans,
indole ureas, and acrylamides that, at least ex vivo, block TF induction in SARS-CoV-2
infected endothelial cells [68]. Moreover, NLRP3 inhibition with MCC950 dimmed the
platelet activation in a rat sepsis model [69]. Dimetil fumarase is being investigated as an
anti-inflammatory strategy for COVID-19 patients because it inhibits gasdermin D, exerting
immunomodulatory effects, and has been shown to reduce pyroptosis in an experimental
murine colitis model [70,71]. Several drugs focused on blocking inflammation through
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HMGB1 have been explored in preclinical settings, showing favorable results in controlling
both sterile and infectious inflammatory conditions and DIC [72].

Finally, some anti-inflammatory drugs used in daily clinical practice can also reduce
immunothrombosis. Colchicine, frequently used in gout treatment, reduced cardiovascular
events in the COLCOT study, when administered to patients who had suffered a myocardial
infarction [73]; this drug inhibits immunothrombosis by reducing NETosis and attenuates
the NLRP3 activation [74].

(d) Targeting Complement

The complement system, part of the innate immune response against bacterial and
viral infections, can be activated through classical pathways (antibody-antigen complex),
alternative pathways (specific surface antigen), and lectin pathways (mannose residues
on pathogen surface). All of these converge in a common pathway, including C3a and
C5a production and C3b-initiated pathogen opsonization, ending in C5b-9 membrane
attack complex formation, which results in target cell lysis [75]. In vitro, blocking C5a with
a murine antibody decreased the cytokine response and viral replication in MERS-CoV
infections. In humans, complement inhibition with eculizumab, an antibody against C5
that prevents the breakdown in C5a and C5b, have been used as treatment for thrombotic
microangiopathy (TMA), which is a manifestation of different clinical scenarios charac-
terized by abnormal complement activation. Recently during the COVID-19 pandemic,
it has arisen as a new treatment opportunity as it reduces the innate immune-mediated
consequences of a severe coronavirus infection [2,75].

Table 1. Therapeutic strategies for immunothrombosis.

Target Drugs

Coagulation

Anticoagulant Low molecular weight heparin [66],
fondaparinux [76].

Antiplatelets Aspirin [77], ticagrelor [78].

NETS Colchicine [73,74], heparin [79], aspirin [77],
ticagrelor [78], DNASes [26].

Inflammation
JAK-STAT pathway inhibitors Baricitinib, ruxolitinib, tafacitinib [80].

STING inhibitors Nitrofurans, acrylamides, indole ureas [68].
Inflammasome inhibitors (NLRP3) MCC950 [71], colchicine [73,74].

Gasdermin D inhibitors Dimetil fumarate [70,71].

HMGB1 inhibitors Peptide p5779, m2G7, metformin,
thrombomodulin [72].

Complement Eculizumab [75].

9. Conclusions

In the last decade, there has been a huge advance in the molecular knowledge related
to immunothrombosis development. Immunothrombosis is defined as a bidirectional
interaction process between the innate immune pathway and coagulation. New strategies
focused on reducing the thrombotic risk without increasing the hemorrhagic risk through
inflammation control have been investigated. Among them, TF expression, inflammasome
and NETs blockage are new attractive strategies to block the immunothrombotic process
without the bleeding effects related to the traditional anticoagulants.
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