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Abstract: The present article investigates viscous fluid flow’s heat and mass transfers over a stretch-
ing/shrinking sheet using the single and multi-wall carbon nanotube models. The analysis considers
the effects of thermal radiation, induced slip, mass transpiration, and inclined magnetic force. The
effect of the carbon nanotube model on fluid flow has not been considered in previous studies. By
exploiting the similarity variable, the governing nonlinear partial differential equations are converted
into nonlinear ordinary differential equation. The derived equations are solved analytically, and
we obtained an exact solution for the velocity and energy conservation equation. The physical
parameters of interest such as induced slip parameter, suction/injection, magnetic field, thermal
radiation, and shear stress are analyzed and presented graphically. In particular, we show that the
fluid flow in a single wall carbon nanotube transfers more energy than the multivalued nanotubes.

Keywords: heat and mass transfer; CNTs; induced slip; inclined MHD; mass transpiration; radiation;
stretching/shrinking sheet

1. Introduction

During the last few decades, many studies have been devoted to the thermal con-
ductivity of nanofluids. Most nanofluid research focuses on understanding their physical
characteristics to improve heat transfer in various industrial applications, including nuclear
reactors, power production, transportation, paper cooling and drying, electronics, medical,
and food. In 1991, Iijima [1] discovered cylindrical carbon atom structures ranging from 1
to 100 nanometers, known as carbon nanotubes (CNTs in short). Carbon nanotubes can be
classified as single-wall (SWCNTs) or multi-wall (MWCNTs). CNTs offer great potential as
nanocontainers for storing gas and nano pipes for moving fluid because of their perfect
hollow cylindrical form and superior mechanical strength. These CNTs’ properties inspired
other researchers, who conducted a numerical analysis of single and multi-wall CNTs
dispersion in various carrier fluids.

The effect of carbon nanotubes (CNT) on the MHD of Newtonian fluid flow across
a nonlinear stretching sheet has been investigated by Mahabaleshwar et al. [2] and oth-
ers [3–8]. A study comparing the flows of SWCNT and MWCNT saturated with water over
a curved surface by Khan et al. [9]. Sneha et al. [10] examined the influence of carbon nan-
otubes on a non-Newtonian fluid flow with the impact of radiation and mass transpiration
over a stretching/shrinking sheet. Nadeem et al. [11] examined the heat transfer analysis
of SWCNT-MWCNT in three different base fluids. The influence of CNTs on a radioactive
MHD fluid flow in the prances of the heat source/sink over a stretching/shrinking flat
plate was studied previously by Mahabaleshwar et al. [12].

Numerous engineering and medical devices use electrically conducting fluids set in
motion by a magnetic force through MHD boundary layer fluxes. This magnetic field

Energies 2023, 16, 2365. https://doi.org/10.3390/en16052365 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16052365
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3450-9609
https://orcid.org/0000-0002-6487-8096
https://doi.org/10.3390/en16052365
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16052365?type=check_update&version=2


Energies 2023, 16, 2365 2 of 26

produces a Lorentz force that opposes the fields and currents. MHD has been shown
crucial in various fluid flow scenarios, with applications in the pharmaceutical industry,
energy generation, etc. Noteworthy are the high-temperature processes where thermal
radiation significantly impacts boundary layer flow. These high-temperature effects have
been considered in a range of engineering applications. The role of heat radiation is crucial
for ensuring product quality because it has a direct impact on cooling rates.

To explore the turbulent convection heat transfer of hybrid nanofluid, Hayat et al. [13]
examined the effect of radiation on second-grade fluid-induced two-dimensional Blasius
flow and heat transport. Devi and Devi [14] examined numerically the impact of Lorentz
force on an ejected from a stretched sheet. Bhattacharyya and Layek [15] investigated
the forced convection flow with the influence of radiation via a porous shrinking plate.
Bhattacharyya et al. [16] investigated the effect of micro polar through viscous flow and
heat transmission of shrinking porous surfaces on viscous flow and heat transmission.

Numerous industrial processes are closely dependent on viscous fluid flows. Let us
cite, without being exhaustive, the manufacture of plastic sheets, paper, the spinning of
fibers, etc., that are performed by a sheet that is contracting or expanding with mass suction
or injection. Miklavcic and Wang [17] were the first to discover the existences of the dual
nature solution in a particular range of mass suction rate over a gas flow in a linearly
shrinking sheet. Later this problem was extended for a shrinking sheet with a power law
velocity [18].

One characteristic that distinguishes micro and nanoscale fluid flow from their macroscale
counterparts is that the wall-slip effect frequently becomes essential. Overlooking them
might result in completely wrong predictions. When used with appropriate slip conditions
on the boundary, the Navier–Stokes equation was demonstrated in Wu [19] to produce
accurate results for nano/macroscale gas flows. Wang [20] used Maxwell’s first order slip
flow model to examine the stretching sheet problem. Using a second-order slip flow model
created by Wu [19], Fang et al. [21,22] studied the wall-slide effect on fluid flow over a
shrinking/stretching sheet and discovered that the flow solutions heavily depend on the
first and second order slip coefficients. Wu [23] used the induced slip for the viscous gas
flow and he identified that mass-suction induced slip may even play a major flow-driven
function by completely reversing the flow direction of nearby gases, thus creating a flow
against the sheet motion. The moving sheet’s flow-driven action is enhanced by mass-
injection-caused slip. Wu [24] was the first to propose the induced slip, and he analyzed
heat effect and mass transfer of the gas flow in the stretching/shrinking sheet setting and
he found out that velocity caused by mass transfer slip can significantly alter gas flow
velocity, resulting in non-negligible changes in temperature distribution and wall heat flux
via thermal convection.

Due to its crucial impact on the quality control of the production processes for poly-
mers, paper, glass, and metallurgy, heat transfer of the viscous fluid flow in a moving has
attracted much interest in recent years. Crane [25] found accurate similarity solutions for the
temperature and velocity fields in a 2-D steady viscous fluid flow across a stretched sheet.
Further, it is enhanced by including mass transpiration, surface temperature, and stretching
sheet; all these additional effects have been studied in the following references [26–28].

It is well-known that any material at a temperature above absolute zero spontaneously
releases energy through the thermal radiation mechanism. Fluid flow having a significant
radiation effect is employed in various industrial applications, including spacecraft, nuclear
power plants, missiles, and aircraft propulsion systems. Many scientists have turned to
the radiation effect to discover the peculiarities of liquid motion. Recently Mahabaleshwar
et al. [29] showed the effect of radiation on the Graphene Casson Nanofluid and the
effect of CNTs modeled through a Newtonian fluid flow formulation. Recently Anusha
et al. [30], Vishalaksi et al. [31], Senha et al. [32] and several researchers in the following
references [33–40] have discussed the flow of several nano liquids along various types of
surfaces.
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The present paper aims at examining the fluid flow in SWCNT and MWCNT with
the impact of the induced slip and inclined MHD. It analyzes the heat transfer rate by
varying the thermal radiation over a stretching/shrinking sheet. The paper’s novelty lies
in introducing the CNTs models on an induced slip for the stretching/shrinking sheet.
The outcomes have potential technological applications in liquid-based systems involving
stretchable/shrinkable fabrics, especially drawing, annealing, and thinning of metallic
wires, continuous stretching/shrinking, rolling, manufacturing of plastic film, and artificial
fibers in Bioengineering. The effect of thermal radiation in this type of problem-inclined
MHD is also new. The set of nonlinear PDEs is converted into a collection of nonlinear
ODEs by employing the appropriate similarity transformation, as it is standard for the
study of boundary layers. Blasius and Prandtl developed the method at the beginning of
the twentieth century (see Schlichting [41]). The resulting ordinary differential equations
are solved analytically. We obtain an explicit dual nature exact solution for both the
stretching/shrinking sheet. The results are analyzed using graphical methods to study the
importance of the physical parameters.

The most important results from the technological aspect are the computation of the
Nusselt number (heat transfer) and the skin friction (viscous drag at the surface) as a
function of the parameter of the problem. The novelty of the present paper lies in the
inclusion into the model of an applied magnetic field and the presence of heat transfer
through radiation (not only conduction and convection) as it is standard in other studies of
the nanofluidic systems (see Khan et al. [42]).

2. The Theoretical Models and Solutions

Let us describe the two-dimensional viscous Newtonian fluid flow over single and
multi-wall carbon nanotube over a stretching/shrinking sheet. The underneath sheet
moves horizontally at a fixed given speed. Similarly, gases are supplied from the wall into
the system in a normal direction. The schematic setup is shown in Figure 1.
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The governing equations for the fluid flow over the plate are as follows [23,24,42]:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+ υn f

[
∂2u
∂x2 +

∂2u
∂y2

]
−

σn f B0
2

ρn f
sin2(τ)u, (2)
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u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

+ υn f

[
∂2v
∂x2 +

∂2v
∂y2

]
−

σn f B0
2

ρn f
sin2(τ)v, (3)

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 −

1
(ρCp)n f

∂qr

∂y
. (4)

Following Blasius and others, the corresponding boundary conditions are provided
by: {

u(x, 0) = uw + uslip, v(x, 0) = vw, T(x, 0) = Tw at y = 0,
u(x, ∞) = 0, T(x, ∞) = T∞, as y→ ∞,

(5)

where u and v are the velocity component in the x and y direction, uw = ±ax represents
the momentum of the fluid with speed a. vw is the wall mass flux of the velocity and uslip
is the velocity of gas slip at the stretching surface which is provided as follows (see [42]):

uslip = bs λ
∂u
∂y
− cs λ2 ∂2u

∂y2 +
4 M
α ρ ν

uw , (6)

where
bs = 2(3− α f 3)/(3α)− (1− f 2)/Kn (7)

and
cs = f 4/4 + (1− f 2)/(2K2

n) (8)

where Kn is the Knudsen number, M = ρ vw is the mass flux at the wall, and the slip
velocity at the stretched sheet can be expressed by:

uslip = bs λ
∂u
∂y
− csλ2 ∂2u

∂y2 ± Γ1ax, (9)

where Γ1 = 4vw/(α v) the non-dimensional mass transfer is induced slip parameter.
By using the Rosseland’s approximation, the radiative heat flux is provided as,

qr = −
4σ∗

3κ∗
∂T4

∂y
, (10)

where σ∗ is the Stefan–Boltzmann constant and κ∗ is the spectral absorption coefficient.
Using Taylor series expansion, T4 is approximated to T4 ∼= −3T4

∞ + 4T4
∞T. Therefore

∂qr

∂y
= −16σ∗T3

∞
3κ∗

∂2T
∂y2 (11)

2.1. The Expression and Thermo-Physical Properties of the CNTs

The expressions for the CNTs thermophysical properties used in the present studies are
a compilation from different previous studies as shown in Figure 2. The dynamical viscosity
of the nanofluidic suspensions is approximated by the Einstein relation (see Alexander and
Michael [43]). The equivalent thermal conductivity is taken form the study of Xue in [44].



Energies 2023, 16, 2365 5 of 26

Energies 2023, 16, x FOR PEER REVIEW 6 of 29 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  Equivalent electrical conductivity 

Presenting our CNTs 
based  
Model 

 

 

 

 

Equivalent Dynamic viscosity 

Equivalent thermal conductivity 

 

 

Equivalent heat capacitance 

 

 

Equivalent density 

 
Figure 2. Summary of the CNTs based model.from [32]. 

Figure 2. Summary of the CNTs based model.from [32].

For the equivalent electrical conductivity, the Maxwell model is used where the
electrical conductivity of the nanofluid (κnf), the electrical conductivity of nanoparticles
(κnp) and of the base fluid (κf), is taken into account (see Chereches and Minea [45]). All
the expressions for the nanofluidic thermophysical properties are dependent of the particle
volume fraction (ϕ) and can be summarized as:
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2.2. Similarity Variables

In order to simplify the equations, we propose the following similarity transformations
applied to the main governing equations.

ψ(x, y) = x
√

νa f (η), Θ(η) =
T − T∞

Tw − T∞
, η =

√
a
ν

y, (12)

where the stream function is represented as ψ and it is related to u and v as follows:

u(x, y) =
∂ψ

∂y
= ax fη(η),

and
v(x, y) = −∂ψ

∂x
= −
√

νa f (η),

at this stage, by using similarity transformations, and the thermophysical expression’s the
Equations (1)–(4) are further simplified. By solving Equations (2)–(4) using Equation (12),
we obtain the following results:

A1 fηηη(η)− A5M sin2(τ) fη(η) + A2

[
f (η) fηη(η)− fη(η)

2
]
= 0, (13)

(A4 + Nr)θηη(η) + A3Pr f (η)θη(η) = 0, (14)

with the associated boundary conditions,

f (0) = − vw√
νa

= Γ2, fη(0) = ±(1 + Γ1) + Λ1 fηη(0) + Λ2 fηηη(0), fη(+∞)→ 0, (15)

θ(0) = 1, θ(∞) = 0 (16)

where

Λ1 = bsλ

√
a
ν

Λ2 = −csλ2 a
ν

,

Nr = 16σ∗T3
∞

3κ f k∗ represents the radiation number,

Pr =
υ f
α stands for the Prandtl number,

M =
σf B2

0
aρ f

quantifies the magnetic field.

2.3. Exact Solution for Velocity Equation

The analytical solution to Equation (13) subject to boundary conditions Equations (15)–(17)
is provided by:

f (η) = Γ2 +
(Γ1 + 1){1− exp(−αη)}

α[1 + Λ1α−Λ2α2]
(17)

where α > 0 represents the solution of an algebraic equation of fourth order. By considering
τ = π

2 then sin(τ) = 1. Hence, the algebraic equation α can be written as follows:

pα4 + qα3 + rα2 + sα + w = 0, (18)
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where
p = A1Λ2,
q = −(A1Λ1 + A2Γ2Λ2),
r = −(A1 + A5MΛ2 − A2Γ2Λ1),
s = (A5Λ1M + A2Γ2),
and
w = (A5M± A2(1 + Γ1)).

In the above expression for w we take the positive sign for the stretching case and the
negative sign for the shrinking case. The roots of the fourth order polynomial Equation (18)
are computed and provided explicitly in Appendix A at the end of the paper.

The non-dimensional shear stress function is provided as

fηη(η) = −
(1 + Γ1)αExp[−αη]

1 + Λ1α−Λ2α2

2.4. Solution for the Temperature Equation

The Equation (14) can be further modified with the aid of Equation (18), and by
introducing a new parameter t = Pr

α2 Exp[−αη], it transforms into

tΘtt(t) + (m + nt)Θt(t) = 0, (19)

Subjected to the following boundary conditions:

Θ
(

Pr
α2

)
= 1 and Θ(0) = 0. (20)

where

m =

{
1− A3PrΓ2

α(A4 + Nr)
− A3 pr(1 + Γ1)

α2(A4 + Nr)(1 + Λ1α−Λ2α2)

}
, and n =

A3(1 + Γ1)

(A4 + Nr)(1 + Λ1α−Λ2α2)
.

subject to boundary conditions, Equation (18) can be straightforwardly integrated twice,

θ(t) =
c1

n1−m

nt∫
0

σa−1e−σdσ + c2, (21)

By imposing the boundary conditions (20), i.e., Θ
(

Pr
α2

)
= 1 and Θ(0) = 0. The

constants in Equation (21) are provided by:

c1 =
n1−m

Γ
(

1−m, nPr
α2

)
− Γ(1−m, 0)

, (22)

c2 = − Γ(1−m, 0)

Γ
(

1−m, nPr
α2

)
− Γ(1−m, 0)

, (23)

Thus, θ(t) is obtained in the following exact form:

Θ(t) =
Γ[1−m, 0]− Γ[1−m, nt]

Γ[1−m, 0]− Γ
[
1−m, nPr

α2

] , (24)
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In terms of the similarity variable η, Equation (24) transforms back into:

Θ(η) =
Γ[1−m, 0]− Γ

[
1−m, nPr

α2 Exp[−αη]
]

Γ[1−m, 0]− Γ
[
1−m, nPr

α2

] (25)

In the next section, we analyze the behavior of these analytical expressions.

3. Results and Discussion

The calculation of the skin friction Cf is important to evaluate the frictional drag that
is applied on an object immersed in a fluid. One usually uses the Newton formula:

τw = µn f

(
∂u
∂y

)
y=0

is known as surface shear stress

By imposing the similarity transformation, we obtain

Re1/2
x C f = 2 ∗ A2 ∗ F′′ (0),

In the present article we discuss the analytical dual branch solution for the fluid flow
in flow over single and multi-wall carbon nanotubes in a stretching and shrinking case with
the presence of the inclined magnetic field and thermal radiation. The following section
presents graphic results for different value of Γ1, Γ2, M, Nr and Pr. The thermophysical
properties of CNT are shown in Table 1 and the Prandtl number for water is kept as 6.2.

Table 1. Physical properties of the base fluid and the CNTs taken from [32,42].

Physical Properties Fluid Phase (Water) SWCNT MWCNT

Cp(J/kgK) 4179 425 796
ρ
(

Kg/m3
)

997.1 2600 1600
κ(W/mK) 0.613 6600 3000
σ(Ω/m)−1 0.05 48,000,000 38,000,000

The demonstration of dual solution are shown in Figure 3a,b for the variation in α and
Γ1 by fixing the values of Λ1 = 2,Λ2 = −0.1, φ = 0.1, and M = 1. Figure 3a shows effect
stretching case and obtained the dual solution by increasing the value of Γ2 the limiting
value of Γ1 is decreases. Figure 3b shows the effect of the shrinking case dual solution, by
increasing the value of Γ2 the limiting value of Γ1 is increased.

Figure 4a,b show the existence of a dual solution for the variation in fηη(0) and Γ1 by
fixing the values of ∆1 = 2, Λ2 = −0.1, φ = 0.1, and M = 1. Figure 4a shows the effect of
stretching case the dual solution exist with Γ1 < −1, and unique solution exists at Γ1 = −1
and the magnitude of skin friction increases with decreasing value of Γ1. Furthermore, it
is observed that the upper branch solution increases with increasing Γ2 but the behavior
the lower branch solution is opposite. In Figure 4b, we show the effect of shrinking case
and obtained the unique solution exists at Γ1 = −1 and dual solution exist Γ1 > −1,
the magnitude of skin friction coefficients fηη(0) decreases with decreasing value of Γ1.
Furthermore, the dual branch solution is vanishing when Γ1 reduces to −1.

Figure 5a–d depicts the variations f (η) and fη(η) with the similarity η at the different
value of the Γ1 with the fixed value of ∆1 = 2, Λ2 = −0.1, Γ2 = 2, φ = 0.1, and M = 1.
The speed of the moving sheet is dependent on the value of Γ1. The sheet moving speed is
precisely cancelled by the mass-suction produced slip velocity at Γ1 = −1, and it is found
that the fluid flow vertically with a uniform velocity equal to vw, when Γ1 > −1 the upper
branch solution’s boundary layer thickness is smaller than that of the lower branch solution.
In both the stretching and shrinking case the boundary layer thickness of the upper branch
solution increases and decreases, respectively, by decreasing the value of Γ1; the lower
branch solutions behaves oppositely, when Γ1 < −1. In both stretching and shrinking case
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the unique solution boundary layer thickness increases and decreases, respectively, with
the decrease in Γ1.
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Figure 6a,b show that there exists a unique solution for mass injection for the stretching
case for the variation in α and Γ1 by fixing the values of Λ1 = 2, Λ2 = −0.1, φ = 0.1 and
M = 1. Furthermore, it depicts that the solution α increases with the increasing value of Γ1
and Γ2. In this case MWCNT has more fluid flow compered with SWCNT.
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Figure 7a,b depict transvers and axial velocity profile with the variation in similarity η
at the different value of the Γ1 for the stretching and shrinking case with the fixed value,
for the stretching case of ∆1 = 2,Λ2 = −0.1,Γ2 = −2,φ = 0.1,M = 1 and for the shrinking
case ∆1 = 2,Λ2 = −0.1,Γ2 = −2,φ = 0.1,M = 2. It is found that the thickness of the
boundary layer reduces as Γ1 increases in Figure 7a,b, whereby the fluid flow in SWCNT
and MWCNT has a positive vertical velocity that is gradually decreasing (become negative)
as one moves far enough away from the sheet. Further, fluid flow in the SWCNT decreases
faster than the MWCNT.
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Figure 7. Plot of f (η) and fη(η) with similarity variable η with effect of Γ1. (a,c) Stretching case, (b,d)
shrinking case.

Figure 8a,b depict transvers and axial velocity profile with the variation in similarity η
at the different value of the M for both stretching and shrinking case. For the Figure 7a–d
the value of ∆1 = 2,Λ2 = −0.1,Γ2 = −0.1, Γ1 = 1,φ = 0.1, are fixed and it is noted that the
boundary layer thickness is decreases with increasing the magnetic field M.
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Figure 9a,b depict transvers and axial velocity profile with the variation in similarity η
at the different value of the φ for both stretching and shrinking case. For the Figure 9a,b the
value of ∆1 = 2, Λ2 = −0.1, Γ2 = −0.1, Γ1 = 1, M = 1, and Figure 9c,d ∆1 = 2, Λ2 = −0.1,
Γ2 = −0.1, Γ1 = 1, M = 2, are fixed and it is noted that the boundary layer thickness is
increased with increasing the solid volume fraction φ.The effects of magnetic field (M),
the solid volume fraction (φ), thermal radiation (Nr), are demonstrated in Figure 10a–f



Energies 2023, 16, 2365 18 of 26

on the temperature profile for both stretching and shrinking case. The value of physical
parameters are fixed as follows Figure 10a,b ∆1 = 2, Λ2 = −0.1, Γ2 = −0.1, φ = 0.1, Γ1 = 1,
Pr = 6.2,Nr = 1, and Figure 10c ∆1 = 2, Λ2 = −0.1, Γ2 = −0.1, Nr = 1, Γ1 = 1, M = 1,
Pr = 6.2, Figure 10d ∆1 = 2, Λ2 = −0.1, Γ2 = −0.1, Nr = 1, Γ1 = 1,M = 2,Pr = 6.2,
Figure 10e ∆1 = 2, Λ2 = −0.1, Γ2 = −0.1, φ = 0.1, Γ1 = 1, M = 1,Pr = 6.2, Figure 10f
∆1 = 2, Λ2 = −0.1, Γ2 = −0.1, φ = 0.1, Γ1 = 1, M = 2,Pr = 6.2,
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• In Figure 10a,b the thermal boundary layer thickness of SWCNT and MWCNT is
increased with increasing the magnetic field M. Further, it is observed that SWCNT
has more energy compeer to the MWCNT for both stretching and shrinking cases;

• By increasing the solid volume fraction, the thermal boundary layer thickness of
SWCNT and MWCNT increases in both cases. Furthermore, it is observed that 10c
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SWCNT have more heat energy compered with MWCNT, and in Figure 10d SWCNT
and MWCNT have some energy;

• The increasing values of Nr result in greater thickness in thermal boundary as show in
Figure 10e,f. Further, it is observed that SWCNT have more thermal energy compered
with MWCNT.
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4. Summary and Conclusions

The present paper investigates the analytical solution of fluid flow of the stretch-
ing/shrinking sheet in the prances of the carbon nanotubes with induced slip on heat
transfer of inclined magnetic field and radiation with mass transpiration. The following
conclusions were obtained in this study:
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• In the absence of CNTs and inclined magnetic field the results are similar to those
presented in previous references [20,21];

• When fluid is injected into the SWCNT and MWCNT the flow of the fluid is along the
direction of the motion of the surface and in the suction case the direction of the flow
is changed due to the prances of mass transfer-induced slip, which has an impact on
the convection process that transfers heat;

• For both stretching and shrinking cases, the impact of induced slip with mass suction
significantly extend the unique and dual solution region of SWCNT and MWCNT;

• In the presence of the mass-injection slip, the velocity of fluid in SWCNT and MWCNT
is increased which increases the speed of the flow along the sheet;

• By increasing the value of the Γ1 and φ, both transverse and axial velocity increases
both cases of stretching and shrinking;

• By increasing the value of the M the transverse velocity decreases and axial velocity
increases both cases of stretching and shrinking;

• The thermal boundary layer thickness is increased while increasing physical parame-
ters such as radiation (Nr), volume fraction, (φ) and magnetic field (M) for both cases
of stretching and shrinking.

Finally, let us comment that in this research we showed that the fluid flow in SWCNT
has higher temperature than MWCNT by using the induced slip condition with the com-
bination of inclined MHD and CNTs. Table 2 lists the thermophysical properties of the
nanofluids. For the velocity behavior in the absences of CNTs and inclined MHD, the results
are reduced to Wu’s results [23]. Moreover, the results provided in ref. [24] in absence
of thermal radiation are recovered too. In Table 3 a comparison with previous results is
presented.

Table 2. Variation in thermophysical properties of nanofluids with solid volume fraction of CNTs.

SWCNT φ µn f ρn f (ρCp)n f κn f σn f

0.1 1.30135 1.16076 0.926519 2.90881 1.33333
0.2 1.74695 1.32151 0.853037 5.29387 1.75000
0.3 2.43924 1.48227 0.779556 0.35882 2.28571

MWCNT

0.1 1.30135 1.06047 0.926517 2.73334 1.33333
0.2 1.74693 1.12093 0.853037 4.89830 1.75000
0.3 2.43924 1.8114 0.779556 7.67900 2.28571

Table 3. Comparative analysis on governing equation provided in the literature.

Authors Fluids The Governing Equation

Wu [23] Newtonian
u

∂u
∂x

+ v
∂u
∂y

= − 1
ρ

∂p
∂x

+ υn f

[
∂2u
∂x2 +

∂2u
∂y2

]
,

u
∂v
∂x

+ v
∂v
∂y

= − 1
ρ

∂p
∂x

+ υn f

[
∂2v
∂x2 +

∂2v
∂y2

]
,

Wu [24] Newtonian u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 ,

Present work Newtonian

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ

∂p
∂x

+ υn f

[
∂2u
∂x2 +

∂2u
∂y2

]
−

σn f B0
2

ρn f
sin2(τ)u,

u
∂v
∂x

+ v
∂v
∂y

= − 1
ρ

∂p
∂x

+ υn f

[
∂2v
∂x2 +

∂2v
∂y2

]
−

σn f B0
2

ρn f
sin2(τ)v,

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 −

1
(ρCp)n f

∂qr

∂y
.
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Nomenclature
This appendix declares the different symbols used in the text of the manuscript and their correspond-
ing SI units (if relevant).

Symbol Explanations S.I Unit
Latin symbols
A1, A2, A3, A4, A5 Constant [−]
B0 Applied magnetic field

[
wm−2]

CP Specific heat at constant pressure
[
JKg−1K−1

]
k∗ Mean absorption coefficient

[
m−2]

M Magnetic field [−]
Nr Radiation parameter [−]
Pr Prandtl number [−]
qr Radiative heat flux

[
Wm−2

]
qw Local heat flux at the wall [−]
T Temperature [K]
Vc Mass transformation [−]
(x, y) Co-ordinate axes [m]

(u, v) Velocities along x- and y- directions
[
ms−1]

Greek symbols
κ Thermal conductivity of fluid

[
WKg−1K−1

]
η Similarity variable [−]
µ f Dynamic viscosity of fluid [−]
ν Kinematic viscosity [−]
ρ Density

[
Kgm−3

]
σ∗ Stefan–Boltzmann constant [−]
Γ Gamma function [−]
φ Nanoparticle volume fraction [−]
ψ Stream function [−]
τ Angle of inclination of magnetic field [−]
Subscripts
f Base fluid [−]
n f Nanofluid [−]
Abbreviations
MHD Magnetohydrodynamics [−]
CNT Carbon nanotubes [−]
HNF Hybrid nanofluid [−]
SWCNT Signal wall carbon nanotube [−]
MWCNT Multi-wall carbon nanotubes [−]

Appendix A. Roots of the Fourth Order Polynomials

This appendix provides the explicit expressions for the roots of the fourth order
polynomials:
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α1,2 = − q

4p −
1
2

√
q2

(4p2)
− (2r)

(3p) +
e
g + g

3×2(1/3)p
−
(

e
g + g

3×2(1/3)p

)
1
2

√
q2

(2p2)
− (4r)

(3p) −
e
g + g

3×2(1/3)p
−
(

e
g + g

3×2(1/3)p

)
−

− q3

p3 +
4qr
p2 −

8s
p

4

√
q2

(4p2)
− (2r)

(3p)+
e
g +

g
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(

e
g +
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3×2(1/3) p
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α3,4 = − q

4p + 1
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√
q2

(4p2)
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e
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3×2(1/3)p
−
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e
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± 1
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e
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−
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4qr
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(4p2)
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e
g +
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3×2(1/3) p
−
(

e
g +

g
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)


e = 2(1/3)(r2 − 3qs + 12pw)

g =

3p

(
(2r3 − 9qrs + 27ps2 + 27q2w− 72prw+√
−4(r2 − 3qs + 12pw)3 + (2r3 − 9qrs + 27ps2 + 27q2w− 72prw)2

)(1/3)


References
1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [CrossRef]
2. Mahabaleshwar, U.S.; Sneha, K.N.; Huang, H.-N. An effect of MHD and radiation on CNTS-Water– based nanofluids due to a

stretching sheet in a Newtonian fluid. Case Stud. Therm. Eng. 2021, 8, 101462. [CrossRef]
3. Meyer, J.P.; McKrell, T.J.; Grote, K. The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure

drop characteristics in the transitional flow regime of smooth tubes. Int. J. Heat Mass Transf. 2013, 58, 597–609. [CrossRef]
4. Li, Q.; Xuan, Y. Convective heat transfer and flow characteristics of Cu–water nanofluid. Sci. China Ser. E Technolgical Sci. 2002, 45,

408–416.
5. Pak, B.; Cho, Y. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat

Transf. 1998, 11, 151–170. [CrossRef]
6. Wen, D.; Ding, Y. Experimental investigation into convective heat transfer ofnanofluids at the entrance region under laminar flow

conditions. Int. J. Heat Mass Transf. 2004, 47, 5181–5188. [CrossRef]
7. Yang, Y.; Zhang, Z.; Grulke, E.; Anderson, W.; Wu, G. Heat transfer properties of nanoparticles-in-fluid dispersions (nanofluids)

in laminar flow. Int. J. Heat Mass Transf. 2005, 48, 1107–1116. [CrossRef]
8. Xie, H.; Lee, H.; Youn, W.; Choi, M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivi-

ties. J. Appl. Phys. 2003, 94, 4967–4971. [CrossRef]
9. Khan, M.R.; Pan, K.; Khan, A.U.; Naeem, U. Comparative study on heat transfer in CNTs-water nanofluid over a curved surface.

Int. Commun. Heat Mass Transf. 2020, 116, 104707. [CrossRef]
10. Sneha, K.N.; Mahabaleshwar, U.S.; Chan, A.; Hatami, M. Investigation of radiation and MHD on non-Newtonian fluid flow over

a stretching/shrinking sheet with CNTs and mass transpiration. Waves Random Complex Media 2022, 1–20. [CrossRef]
11. Nadeem, S.; Khan, A.U.; Hussain, S.T. Model based study of SWCNT and MWCNT thermal conductivities effect on the heat

transfer due to the oscillating wall conditions. Int. J. Hydrog. Energy 2017, 42, 28945–28957. [CrossRef]
12. Mahabaleshwar, U.S.; Sneha, K.N.; Chan, A.; Zeidan, D. An effect of MHD fluid flow heat transfer using CNTs with thermal

radiation and heat source/sink across a stretching/shrinking sheet. Int. Commun. Heat Mass Transf. 2022, 135, 106080. [CrossRef]
13. Hayat, T.; Nawaz, M.; Sajid, M.; Asghar, S. The effect of thermal radiation on the flow of a second grade fluid. Comput. Math.

Appl. 2009, 58, 369–379. [CrossRef]
14. Devi, S.S.U.; Devi, S.P.A. Numerical Investigation on Three Dimensional Hybrid Cu−Al2O3/Water Nanofluid Flow Over a

Stretching Sheet with Effecting Lorentz Force Subject to Newtonian Heating. Can. J. Phys. 2016, 94, 490–496. [CrossRef]
15. Bhattacharyya, K.; Layek, G.C. Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer

towards a shrinking sheet with thermal radiation. Int. J. Heat Mass Transf. 2011, 54, 302–307. [CrossRef]
16. Bhattacharyya, K.; Mukhopadhyay, S.; Layek, G.C.; Pop, I. Effects of thermal radiation on micropolar fluid flow and heat transfer

over a porous shrinking sheet. Int. J. Heat Mass Transf. 2022, 55, 2945–2952. [CrossRef]
17. Miklavcic, M.; Wang, C.Y. Viscous flow due to a shrinking sheet. Q. Appl. Math. 2006, 64, 283–290. [CrossRef]
18. Fang, T. Boundary layer flow over a shrinking sheet with power-law velocity. Int. J. Heat Mass Transf. 2008, 51, 5838–5843.

[CrossRef]
19. Wu, L. A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett. 2008, 93, 253103. [CrossRef]
20. Wang, C.Y. Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal. Real World Appl. 2009,

10, 375–380. [CrossRef]

http://doi.org/10.1038/354056a0
http://doi.org/10.1016/j.csite.2021.101462
http://doi.org/10.1016/j.ijheatmasstransfer.2012.11.074
http://doi.org/10.1080/08916159808946559
http://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
http://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038
http://doi.org/10.1063/1.1613374
http://doi.org/10.1016/j.icheatmasstransfer.2020.104707
http://doi.org/10.1080/17455030.2022.2029616
http://doi.org/10.1016/j.ijhydene.2017.09.114
http://doi.org/10.1016/j.icheatmasstransfer.2022.106080
http://doi.org/10.1016/j.camwa.2009.01.040
http://doi.org/10.1139/cjp-2015-0799
http://doi.org/10.1016/j.ijheatmasstransfer.2010.09.043
http://doi.org/10.1016/j.ijheatmasstransfer.2012.01.051
http://doi.org/10.1090/S0033-569X-06-01002-5
http://doi.org/10.1016/j.ijheatmasstransfer.2008.04.067
http://doi.org/10.1063/1.3052923
http://doi.org/10.1016/j.nonrwa.2007.09.013


Energies 2023, 16, 2365 26 of 26

21. Fang, T.; Yao, S.; Zhang, J.; Aziz, A. Viscous flow over a shrinking sheet with a second order slip flow model. Commun. Nonlinear
Sci. Numer. Simul. 2010, 15, 1831–1842. [CrossRef]

22. Fang, T.; Aziz, A. Viscous Flow with Second-Order Slip Velocity over a Stretching Sheet. Z. Für Nat. A 2010, 65, 1087–1092.
[CrossRef]

23. Wu, L. Mass transfer induced slip effect on viscous gas flows above a shrinking/stretching sheet. Int. J. Heat Mass Transf. 2016, 93,
17–22. [CrossRef]

24. Wu, L. Effect of mass transfer induced velocity slip on heat transfer of viscous gas flows over stretching/shrinking sheets. Int. J.
Therm. Sci. 2017, 112, 65–173. [CrossRef]

25. Crane, L.J. Flow past a Stretching Plate. J. Appl. Math. Phys. (ZAMP) 1970, 21, 645–647. [CrossRef]
26. Cortell, R. Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat genera-

tion/absorption and suction/blowing. Fluid Dyn. Res. 2005, 37, 231–245. [CrossRef]
27. Bataller, R.C. Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. J. Mater.

Process. Technol. 2008, 203, 176–183. [CrossRef]
28. Mahantesh, M.; Nandeppanavar, K.; Vajravelu, M.; Abel, S.; Ng, C.-O. Heat transfer over a nonlinearly stretching sheet with

non-uniform heat source and variable wall temperature. Int. J. Heat Mass Transf. 2011, 54, 4960–4965. [CrossRef]
29. Mahabaleshwar, U.S.; Aly, E.H.; Vishalakshi, A.B. MHD and Thermal Radiation Flow of Graphene Casson Nanofluid Stretch-

ing/Shrinking Sheet. Int. J. Appl. Comput. Math 2022, 8, 113. [CrossRef]
30. Anusha, T.; Mahabaleshwar, U.S.; Sheikhnejad, Y. An MHD of Nanofluid Flow over a Porous Stretching/Shrinking Plate with

Mass Transpiration and Brinkman Ratio. Transp. Porous Med. 2022, 142, 333–352. [CrossRef]
31. Vishalakshi, A.B.; Mahabaleshwar, U.S.; Sarris, I.E. An MHD Fluid Flow over a Porous Stretching/Shrinking Sheet with Slips and

Mass Transpiration. Micromachines 2022, 13, 116. [CrossRef] [PubMed]
32. Sneha, K.N.; Mahabaleshwar, U.S.; Sharifpur, M.; Ahmadi, M.H.; Al-Bahrani, M. Entropy Analysis in MHD CNTS Flow Due to a

Stretching Surface with Thermal Radiation and Heat Source/Sink. Mathematics 2022, 10, 3404. [CrossRef]
33. Areekara, S.; Sabu, A.S.; Kumar, R.; Mathew, A. Triple stratification effects on bioconvective stagnation point flow pertaining

carbon nanotubes due to induced magnetic field. ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Und Mech. 2021, 101,
e202000375. [CrossRef]

34. Reddy, Y.R.O.; Reddy, M.S.; Reddy, P.S. MHD boundary layer flow of SWCNT-water and MWCNT-water nanofluid over a vertical
cone with heat generation/absorption. Heat Transf.-Asian Res. 2019, 48, 539–555. [CrossRef]

35. Samantaray, S.S.; Shaw, S.; Misra, A.; Nayak, M.K.; Prakash, J. Darcy–Forchheimer up/downflow of entropy optimized radiative
nanofluids with second-order slip, nonuniform source/sink, and shape effects. Heat Transf. 2022, 51, 2318–2342. [CrossRef]

36. Muhammad, T.; Waqas, H.; Farooq, U.; Alqarni, M.S. Numerical simulation for melting heat transport in nanofluids due to
quadratic stretching plate with nonlinear thermal radiation. Case Stud. Therm. Eng. 2021, 27, 101300. [CrossRef]

37. Mathew, A.; Areekara, S.; Sabu, A.S.; Saleem, S. Significance of multiple slip and nanoparticle shape on stagnation point flow of
silver-blood nanofluid in the presence of induced magnetic field. Surf. Interfaces 2021, 25, 101267. [CrossRef]

38. Ullah, K.W.; Awais, M.; Parveen, N.; Ali, A.; Awan, S.E.; Malik, M.Y.; He, Y. Analytical Assessment of (Al2O3–Ag/H2O) Hybrid
Nanofluid Influenced by Induced Magnetic Field for Second Law Analysis with Mixed Convection, Viscous Dissipation and Heat
Generation. Coatings 2021, 11, 498. [CrossRef]

39. Khan, U.; Zaib, A.; Ishak, A.; Bakar, S.A. Time-dependent Blasius–Rayleigh–Stokes flow conveying hybrid nanofluid and heat
transfer induced by non-Fourier heat flux and transitive magnetic field. Case Stud. Therm. Eng. 2021, 26, 101151. [CrossRef]

40. Panigrahi, L.; Panda, J.; Sahoo, S.S. Unsteady Heat Transfer and Entropy Generation Study on Viscoelastic Fluid Flow Coupled
with Induced Magnetic Field. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1699–1710. [CrossRef]

41. Schlichting, H. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-540-66270-9.
42. Khan, W.A.; Khan, Z.H.; Rahi, M. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary.

Appl. Nanosci. 2014, 4, 633–641. [CrossRef]
43. Alexander, B.; Michael, N. Einstein’s viscosity equation and nanolubricated friction. Langmuir 2018, 34, 12968–12973. [CrossRef]
44. Xue, Q.Z. Model for thermal conductivity of carbon nanotube-based composites. Phys. B Condens. Matter 2005, 368, 302–307.

[CrossRef]
45. Chereches, E.I.; Minea, A.A. Electrical Conductivity of New Nanoparticle Enhanced Fluids: An Experimental Study. Nanomaterials

2019, 9, 1228. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cnsns.2009.07.017
http://doi.org/10.1515/zna-2010-1212
http://doi.org/10.1016/j.ijheatmasstransfer.2015.09.080
http://doi.org/10.1016/j.ijthermalsci.2016.10.006
http://doi.org/10.1007/BF01587695
http://doi.org/10.1016/j.fluiddyn.2005.05.001
http://doi.org/10.1016/j.jmatprotec.2007.09.055
http://doi.org/10.1016/j.ijheatmasstransfer.2011.07.009
http://doi.org/10.1007/s40819-022-01300-w
http://doi.org/10.1007/s11242-021-01695-y
http://doi.org/10.3390/mi13010116
http://www.ncbi.nlm.nih.gov/pubmed/35056281
http://doi.org/10.3390/math10183404
http://doi.org/10.1002/zamm.202000375
http://doi.org/10.1002/htj.21393
http://doi.org/10.1002/htj.22403
http://doi.org/10.1016/j.csite.2021.101300
http://doi.org/10.1016/j.surfin.2021.101267
http://doi.org/10.3390/coatings11050498
http://doi.org/10.1016/j.csite.2021.101151
http://doi.org/10.1007/s40995-021-01126-z
http://doi.org/10.1007/s13204-013-0242-9
http://doi.org/10.1021/acs.langmuir.8b02861
http://doi.org/10.1016/j.physb.2005.07.024
http://doi.org/10.3390/nano9091228

	Introduction 
	The Theoretical Models and Solutions 
	The Expression and Thermo-Physical Properties of the CNTs 
	Similarity Variables 
	Exact Solution for Velocity Equation 
	Solution for the Temperature Equation 

	Results and Discussion 
	Summary and Conclusions 
	Appendix A
	References

