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A multiscale material model for metallic powder compaction during hot 
isostatic pressing 

B. Elguezabal a,b,*, J.M. Martínez-Esnaola a,b, R. Soler c, E. Paños c, J. Alkorta a,b 

a CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizabal 15, 20018 Donostia / San Sebastián, Spain 
b Universidad de Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia / San Sebastián, Spain 
c Industria de Turbo Propulsores S.A., ITP Aero, Parque Tecnológico, Edificio 300, 48170 Zamudio, Spain   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Constitutive model for metallic powders 
has been extended with Eshelby's model. 

• Pressure-dependent viscoplastic model 
has been extended with mesoscopic FEM 
data. 

• Extended constitutive model has been 
validated with experimental data. 

• Extended constitutive model provides 
higher accuracy in real industrial cases.  

A R T I C L E  I N F O   

Keywords: 
Powder compaction 
Finite element method 
Hot isostatic pressing 
Mesoscopic analysis 
Experimental characterization 

A B S T R A C T   

The prediction of the distortions during Near-Net-Shape Hot Isostatic Pressing (NNS-HIP) is an intrinsic multi-
scale problem where the local interactions among particles determine the macroscopic distortions taking place 
during the sintering and densification of a component. In this work, a multiscale approach is proposed to solve 
this problem. In particular, a viscoplastic constitutive model capable of predicting macroscopic contractions 
during a HIP process with high accuracy has been developed, implemented and validated. The macroscopic 
model incorporates the mechanical behaviour predicted at the meso-scale by means of multiple-particle finite 
element models (MP-FEM) of an agglomerate of powder particles. The model is validated through the prediction 
of distortions during HIP of a full scale industrial case. It is concluded that adding the microscopic information of 
the HIP process to simulate the contractions at the macroscopic level results in a considerable improvement of 
the accuracy of the predictions.   

1. Introduction 

Nowadays, advanced powder metallurgy routes are widely used in 

the manufacturing of high quality and value components. These 
manufacturing processes were developed in the aeronautical sector, 
along with high-performance superalloys. These materials contain a 
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higher amount of strengthening alloying elements, which lead to higher 
segregations and reductions in hot workability [1]. Among the different 
powder metallurgy processes, Hot Isostatic Pressing (HIP) has been used 
in industrial applications since the 70s [2]. In the HIP process, high 
temperature (about 70% of the melting point) and high pressure (up to 
200 MPa) are simultaneously applied to encapsulated powder particles 
resulting in fully dense components and almost isotropic material 
properties [3]. 

The capability of HIP to produce near net-shape (NNS) components, 
which reduces the use of raw materials and minimizes the costs due to 
further machining processes, has been a major driving force for its 
commercial development. The accurate design of the tooling and the 
canister plays a key role in the NNS manufacturing via HIP. In this sense, 
the finite element method (FEM) stands out as the most promising tool 
for the design of the canisters used in HIP [4]. 

The main objective of this work is to predict the distortions during 
HIP processes on real components. The outline of the work is as follows. 
Mechanical tests have been carried out to characterize the viscoplastic 
behaviour of the fully dense Astroloy in the temperature range of the HIP 
processes. This is used, on the microscopic scale, to obtain the me-
chanical response of an agglomerate of metal powder particles by means 
of multiple-particle finite element (MP-FEM) simulations of simple cubic 
particle arrangements. A porous viscoplasticity model is then imple-
mented in a CREEP subroutine in Abaqus® to simulate the HIP pro-
cessing of an Astroloy powder encapsulated in an S355 steel canister. 
The model is calibrated using the multi-scale modelling approach 
together with the results of mechanical tests performed in partially 
dense and fully dense Astroloy compacts. Finally, comparison of the 
results, both using and not using the information generated at the 
microscopic level, indicates that the model with the input from the 
MPFEM analysis is about three times more accurate. 

2. Review on porous material models 

The accuracy of FEM modelling strongly depends on the adopted 
powder compaction constitutive model. In the FEM approximation, the 
powder is modelled as a continuum, whose behaviour is defined by a 
suitable material constitutive law in which powder compaction (in-
elastic deformation) occurs under hydrostatic pressure. 

The constitutive models employed for the prediction of the powder 
behaviour during the compaction process are classified in two cate-
gories. The first type of models corresponds to frictional materials, 
which describe the behaviour of green metal powder [5]. The first model 
of this type was proposed in the 18th century by Coulomb [6]. However, 
it was not until the 1950s that Drucker and Prager [7] published their 
frictional model. Since the publication of this pioneering work, several 
authors have published their own extensions of the Drucker-Prager 
model [8–11]. 

The second type of constitutive models originates from the works 
published by Kuhn and Downey [12] and Green [13]. Several yield 
functions for porous materials can be found in the literature; some of 
them have been derived from experimental observations [12,14–16] 
and some others have been postulated based on micromechanical 

considerations [13,17]. The main disadvantage of the empirical models 
is the lack of general information about the sintering process. For the 
case of the micromechanics-based models, the limitation of application 
to a certain porosity range is their main disadvantage. For example, the 
model proposed by Fleck et al. [17] is only suitable for high porosities. 
At porosities below about 0.25, the contacts start to interact, and the 
particles become less and less spherical in shape [18]. 

In general, both types of models include the dependence upon the 
hydrostatic stress (p) and the equivalent deviatoric stress (q), where p 

and q are calculated, respectively, as σkk
3 and 

̅̅̅̅̅̅̅̅̅̅
3
2sijsij

√

, where sij = σij −

1
3σkkδij, σij being the Cauchy stress tensor. The yield surfaces of all these 
constitutive models can be expressed by means of Eq. 1. 

ϕ = AJ2 +B(I1)
2
− η
(
σy
)2

= 0 (1)  

where I1 is the first invariant of Cauchy stress tensor (σij), J2 is the second 
invariant of the deviatoric stress tensor (sij), σy is the yield stress of the 
dense material, and A, B, η are material parameters dependent on the 
relative density (ρr). 

Table 1, generated from the work of Lee and Kim [19], summarizes 
the evolution of material parameters A, B and η with respect to the 
relative density (ρr) proposed by a number of authors in the 
bibliography. 

Gurson [20] proposed a yield surface for porous materials derived 
from micro-mechanical considerations, analysing the behaviour of a 
spherical void in a material unit cell. This model is an extension of the 
classical von Mises plasticity model. The yield surface corresponding to 
Gurson's model is given by the following equation: 

ϕ =
3J2

σy
2 + 2(1 − ρr)cosh

(
I1

2
̅̅̅
3

√
σy

)

−
(
1+(1 − ρr)

2 )
= 0 (2) 

At high temperatures, metallic materials exhibit rate-dependent 
plasticity or creep [21]. For that reason, Abouaf et al. [2] and Svo-
doba et al. [22] developed viscoplastic constitutive models for porous 
metallic materials. In general, these viscoplastic constitutive models use 
the following expression for the equivalent stress (σeq): 

σeq
2 = 3cJ2 + fI1

2 (3)  

where c = c(ρ) and f = f(ρ) are material parameters representing the 
contribution of the deviatoric and volumetric components of the stress 
tensor to the behaviour of the powder, respectively. The temperature 
and strain-rate dependence of these parameters is usually neglected in 
the literature. 

Finally, the evolution of the inelastic strain (εvp) is typically defined 
as the derivative of a viscoplastic potential (Ω) with respect to the stress 
tensor (Eq. 4). 

ε̇vp
=

∂Ω
∂σ =

∂Ω
∂σeq

∂σeq

∂σ =
∂Ω
∂σeq

(
1

σeq

)(
3c
2

s+ fI11
)

(4) 

Eq. 4 is similar to the flow rule employed in conventional plasticity 
models [23], where ∂Ω/∂σeq is the consistency parameter, which defines 

Table 1 
Analytical expressions proposed for the evolution of the viscoplastic parameters.  

Authors A B η 

Doraivelu [15] 2+ ρr
2 

(
1 − ρr

2)

3 
2ρr

2 − 1 

Lee and Kim 
[19] 2+ ρr

2 
(
1 − ρr

2)

3 

[ρr − ρr0
1 − ρr0

]2 

Shima & Oyane 
[14] 

3

1 +
( 2.49

3

)2
(1 − ρr)

1.028  

( 2.49
3

)2
(1 − ρr)

1.028

1 +
( 2.49

3

)2
(1 − ρr)

1.028  

ρr
5

1 +
( 2.49

3

)2

(1 − ρr)
1.028   
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the magnitude of the viscoplastic strain rate (ε̇vp), and ∂σeq/∂σ de-
termines its direction in the stress space [23]. Assuming associativity, a 
yield surface for Abouaf's viscoplastic model can be derived, which is an 
ellipse in the invariant plane p − q, as shown in Eq. 5. Taking the values 
of parameters c and f that Abouaf et al. determined in their work [2], a 
yield surface can be determined for a given viscoplastic strain rate. 

ϕ = c
(

q
σy

)2

+ 9f
(

p
σy

)2

− 1 = 0 (5) 

Note that the first invariant of Cauchy stress tensor (I1) and the 
second invariant of the deviatoric stress tensor (J2) are proportional to, 
respectively, the hydrostatic stress (p) and the von Mises equivalent 
stress (q), so eq. 5 can be considered as a generalized form of yield 
surfaces for plasticity constitutive models of porous metals. 

As can be seen in Fig. 1, a huge discrepancy is observed among the 
different studied models. This difference in the material constitutive 
models is due to the high sensitivity of the mechanical behaviour of the 
metallic powders to the shape, arrangement and distribution of particles 
and pores. This makes the calibration of a constitutive model for the 
prediction of shrinkage during a HIP process a very challenging task. In 
the present work, a multiscale simulation approach together with the 
experimental characterization carried out by Elguezabal et al. [24,25] 
will be considered to clarify the effect of the porosity on c and f (see eq. 
3). 

3. Material constitutive model and implementation 

The densification of metallic powder compacts under high hydro-
static pressures and high temperatures is intrinsically a multi-scale 
problem where the macroscopic scale distortions are driven by the 
local micro-scale powder particle interactions. The model proposed in 
this paper is based on a multi-scale approach that stands on the con-
tinuum (macroscale) elastic-viscoplastic model framework considered 
in eq. (4). 

In this model, the parameters c = c(ρ,T, ϵ̇vp) and f = f(ρ,T, ϵ̇vp)

determine the viscoplastic flow under, respectively, deviatoric and hy-
drostatic stresses. These material parameters have been usually 
considered independent of the processing temperature and estimated 
through experimental tests [2,14–19] or excessively simple theoretical 
models [20]. In the present approach, they will be analyzed combining 
mesoscopic FEM simulations of representative volume elements (RVE) 
and experimental mechanical testing. 

3.1. Macroscopic scale model 

3.1.1. Elastic-viscoplastic model 
To model the inelastic behaviour of Astroloy powder during the HIP 

process at high temperatures, the viscoplastic model developed by 
Abouaf et al. [2] has been employed. To begin with, an additive 
decomposition of the strain rate tensor (ε̇) into its elastic (ε̇e

) and in-
elastic (ε̇vp

) part is assumed: 

ε̇ = ε̇e
+ ε̇vp (6) 

Eq. 4 defines the evolution of the inelastic strain rate (ε̇vp
). In this 

equation, the 
(

∂Ω
∂σeq

)
term defines the viscoplastic behaviour of the fully 

dense material. In this case, this term fits a creep law of the hyperbolic 
sine type, as shown in the following expression. 

∂Ω
∂σeq

= Ace−
Q

RT
[
sinh

(
ασeq

) ]nc (7)  

where T is the current (absolute) temperature and Ac, nc, α and Q/R 
define material parameters, which have been characterized in the pre-
sent work. 

Applying the law of conservation of mass, the expression that defines 
the evolution of the relative density as a function of the inelastic 
deformation is given by 

ρr = ρr0e− tr(εvp) (8)  

where ρr0 defines the initial relative density. 
In both the Svodoba et al. [22] and Abouaf et al. [2] models, the 

assumption is made that the parameters c and f only depend on the 
relative density. In the present work, the effect of temperature on these 
parameters has also been considered and included in the analysis. 

For the elastic component of the powder model, an isotropic elastic 
behaviour dependent on temperature and relative density has been 
assumed. This can be written in the form 

σ = λtr(εe)1+ 2μεe (9)  

where λ and μ are Lamé's coefficients, which can be defined as function 
of elastic modulus (E) and Poisson's coefficient (v) as follows: 

λ =
Ev

(1 + v)(1 − 2v)

μ =
E

2(1 + v)
(10) 

The experimental characterization of these parameters as a function 
of temperature and relative density is time-consuming and expensive 
and it is not available in the literature. Therefore, approximate semi- 
analytical methods have been employed in this work for the predic-
tion of average properties of multiphase materials. 

3.1.2. Eshelby approach to determine physical properties of porous 
materials 

Most models used to predict the average properties of a multiphase 
material are based on the work of Eshelby [26], who studied the 
behaviour of an elastic matrix with an ellipsoidal inclusion. Applying the 
theory developed by Eshelby, a differential equation (eq. 11) is ob-
tained, which relates the change in the elastic properties of the com-
pound for every increase in the volume fraction of the inclusion [25]. 

dℂc

dvf
=

1
1 − vf

(ℂi − ℂc)
[
I + Sℂc

− 1(ℂi − ℂc)
]− 1 (11)  

where ℂc and ℂi are the stiffness tensor of the composite and the in-
clusion (void), respectively, vf is the volume fraction of voids. Finally, S 

is the Eshelby tensor, which is a function of the void geometry and the 

Fig 1.. Graphical comparison of the hydrostatic parameter f of the works of 
Shima & Oyane [14], Doraivelu [15], Abouaf et al. [2] and Gurson[20]. 
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matrix stiffness. 
By solving the above differential equation numerically, the evolu-

tions of the elastic modulus (E) and Poisson's coefficient (ν) of the 
composite material have been obtained (eqs. 12 and 13). Fig. 2 shows 

Fig. 2.. Evolution of elastic modulus (red) and Poisson’s modulus (blue) for 
different relative density levels. 

Fig. 3.. Evolution of thermal conductivity (red) and specific heat capacity 
(blue) for different relative density levels. 

Fig. 4.. Cut view of the mesoscopic finite element model used in [25] for the prediction of hydrostatic (f) and deviatoric (c) parameters.  

Fig. 5.. Correlation obtained in [25] among experimental results, numerical 
results from FEM and bibliography results. Abbreviations for configurations: CS 
(Cubic Simple), BCC (Body Centered Cubic) and FCC (Face Centered Cubic). 

Table 2 
Cases considered for the study of the effect of temperature and strain rate on the 
hydrostatic (f) and deviatoric (c) parameters.  

Case number T(∘C) ϵ̇vp( s− 1)

1 1000 6 ⋅ 10− 4 

2 1000 6 ⋅ 10− 5 

3 1100 6 ⋅ 10− 3 

4 900 6 ⋅ 10− 3  
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the evolution of these material parameters for different relative density 
levels. 

E(ρr)

Eref
= ρr

2 (12)  

ν(ρr)

νref
= 1 −

0.122(1 − ρr) − 0.09158(1 − ρr)
2
+ 0.04933(1 − ρr)

3

νref
(13) 

Where Eref and νref define elastic modulus and Poisson's ratio at full 
dense state, which means a relative density (ρr) equal to one. 

Fig. 6.. Difference of the hydrostatical parameter (f) obtained in cases from 
Table 2 with respect to the reference case. 

Fig. 7.. Difference of the deviatoric parameter (c) obtained in cases from 
Table 2 with respect to the reference case. 

Fig. 8.. Difference of the evolution of hydrostatic parameter (f) for 800ºC and 
1100ºC with respect to 1000 ºC. 

Fig. 9.. Difference of the evolution of deviatoric parameter (c) for 800ºC and 
1100ºC with respect to 1000ºC. 

Fig. 10.. 3D geometry of the Astroloy cannister and powder assem-
bly (Undeformed). 

Fig. 11.. Mesh used to model the assembly of Fig. 8 in its undeformed (left) and 
deformed (right) configurations. 
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The behaviour of a solid in a thermal problem, where the predomi-
nant mechanism of heat transfer is conduction, is determined by its 
thermal conductivity, specific heat capacity and density. By means of a 
modification of the previous approach, developed by Eshelby, the 
variation of the thermo-physical properties for different degrees of 
compaction of the powder metal material has been calculated. Indeed, 
eqs. 14 and 15 describe the conductivity (K) and the specific heat ca-
pacity (cp) as a function of relative density. The evolution of the thermo- 
physical properties with respect to the relative density is shown in Fig. 3. 

K(ρr)

Kref
= ρr

1.5 (14)  

cp(ρr)

cpref
= ρr (15) 

Regarding the material employed in the canister, a potential-type 
creep law has been employed to define the inelastic behaviour at high 
temperatures. More specifically, the creep law has been defined ac-
cording to the following equation: 

ε̇vp
= Asqns (16)  

where As and ns are material properties defined over the desired tem-
perature range. 

3.2. Mesoscopic approach to powder compaction 

The multiscale approach is a well-established procedure in the 
modelling of materials with specific microstructures, as it allows 

drawing relevant conclusions on materials behaviour while considerably 
reducing the experimental work (or when no experimental procedure is 
available). The microstructure is usually modelled using a Representa-
tive Volume Element (RVE) with periodic boundary conditions (PBCs) so 
that infinitely large periodic systems can be simulated. Computational 
homogenization techniques are used to determine the material behav-
iour on the macroscale [27,28]. 

In a previous work, Elguezabal et al. [25] developed and validated a 
mesoscopic model that predicts the hydrostatic and deviatoric behav-
iour of an arrangement of metallic particles. In that work, the micro-
scopic mechanical response of different simple particle arrangements, in 
particular, Cubic Simple (CS), Body-Centered Cubic (FCC), Face- 
Centered Cubic (FCC) structures were modelled. The relative size of 
voids determines the overall relative density of the system. In this work, 
it was demonstrated with experimental results that the cubic structure 
(CS) reliably reproduces the evolution of the hydrostatic parameter (f) 
for the analyzed batch of powder. 

Regarding boundary conditions, those employed on RVE are gener-
ally defined such that the energy equivalence between the two scales, 
known as the Hill-Mandel condition, is preserved [23]. To satisfy this 
condition the following equation must be accomplished: 

P : Ḟ =
1
V0

∫

V0

P : ḞdV (17)  

where P is the first Piola-Kirchhoff stress tensor, F is the deformation 
gradient and V0 is the volume of the RVE. 

Several different types of boundary conditions satisfy the Hill- 
Mandel condition; in the present work the periodic displacement and 

Fig. 12.. Deviations of the non-extended material model for a real industrial application.  
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antiperiodic traction boundary conditions have been employed. Ac-
cording to this periodic boundary condition, relative displacements at 
the boundaries between two contiguous unit cells must be connected 
properly to avoid inter-penetration or discontinuities [25]. In order to 
impose this relative displacement in the finite element calculations, 
three reference nodes (also known as dummy nodes) are included in the 
model. 

The homogenization procedure based on the work of Loidolt [28] has 
been employed, where the macroscopic stress tensor is computed from 
the forces taken from the reference nodes and the current cross-sectional 
areas. 

σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fxx

Ax

Fxy

Ax

Fxz

Ax

Fyx

Ay

Fyy

Ay

Fyz

Ay

Fzx

Az

Fzy

Az

Fzz

Az

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)  

where,Fx, Fy and Fz represent the force vectors from the reference nodes 
and the second index determines their directional component, and Ax, 
Ay and Az determine the cross sectional area of the YZ, XZ and XY planes, 
respectively, of the RVE cube. 

By imposing different stress states, the values of the parameters f and 
c have been determined for different relative densities, temperatures and 
strain rates. Finally, the obtained results have been compared to 
experimental results in partially dense Astroloy powder compacts. 

These results showed that, for a given temperature, a simple cubic 
(CS) arrangement of particles was optimum (in terms of the parameters c 
and f,see eq. 3) to describe the macroscopic behaviour of Astroloy 
compacts. Figs. 4 and 5 show the mesoscopic finite element model used 

and its correlation with the experimental data for the hydrostatic case. 
Both Abouaf et al. [2] and Svodoba [22] assumed that the hydro-

static and deviatoric parameters depend only on the relative density. In 
this work, we extend the mesoscopic approach detailed in [25] to ac-
count for the temperature and strain rate dependence of the parameters 
c and f (see eq. 3). To do that, we consider a simple cubic arrangement of 
particles (see Fig. 4). Its behaviour is simulated using multiple particle 
finite element models under different temperature and strain rate 
conditions. 

The elastic-viscoplastic behaviour of these powder particles corre-
spond exactly to a hyperbolic sine creep law that was fitted to experi-
mental mechanical tests in a previous work [25]. As a reference, we will 
also consider the values of cref and fref obtained in [25] and validated 
experimentally with fully dense and partially dense samples obtained at 
T = 1000∘C and ϵ̇vp = 6⋅10− 3s− 1. 

From the current mesoscopic models, the deviations of c and f were 
calculated with respect to these reference values (fref and cref), i.e.: 

f (ρ,T, ϵ̇vp) = fref +Δf (ρ,T, ϵ̇vp) (19)  

c(ρ, T, ϵ̇vp) = cref +Δc(ρ,T, ϵ̇vp) (20) 

Four different cases were studied in [25] with different packing 
densities, see Table 2. Cases 1 and 2 determined the strain rate depen-
dence of c and f. Cases 3 and 4 determined the temperature dependence 
of c and f. 

Concerning the effect of the strain rate, Figs. 6 and 7 show that it is 
negligible compared to the effect of temperature both for f and c. 

In contrast, Figs. 6 and 7 show that the hydrostatic and deviatoric 
parameters are temperature sensitive, since the difference of these pa-
rameters for various temperatures is in the same order of magnitude as 
the absolute value of the parameters themselves (see, for instance, 

Fig. 13.. Deviations of the extended material model for a real industrial application.  

B. Elguezabal et al.                                                                                                                                                                                                                             



Powder Technology 425 (2023) 118599

8

Fig. 1). The effect of temperature seems to be more relevant in the case 
of c compared to f (where the deviations from the reference value are 
only apparent for relative densities below 0.85). 

Once the influence of temperature on the hydrostatic parameter (f) 
and the deviatoric parameter (c) has been demonstrated, the mesoscopic 
FEM model has been used to determine the evolution of these parame-
ters in the temperature range between 800∘C and 1100∘C. 

Specifically, the evolution of the hydrostatic and deviatoric param-
eters has been characterized for the following temperatures: 800 ◦C, 
900 ◦C, 1000 ◦C and 1100 ◦C. Figs. 8 and 9 show the difference of the 
hydrostatic and deviatoric parameters (Δf and Δc, respectively) for the 
highest and the lowest temperatures with respect to the evolution of 
these parameters for a temperature of 1000 ◦C, which was characterized 
in the work of Elguezabal et al. [25]. As can be seen in Figs. 8 and 9, at 
higher temperatures the value of the hydrostatic parameter (f) decreases 
for low relative density values. However, above relative density values 
of 0.80, the value of the hydrostatic parameter is shown to be inde-
pendent of temperature. 

In the case of the deviatoric parameter (c), the increase in temper-
ature leads to a reduction in the value of this parameter. Nevertheless, 
this value is only shown to be independent of temperature for very high 
values of relative density, around 0.97. 

3.3. Implementation in FEM 

As indicated above, the main objective of this work is to predict the 
distortions during HIP processes on real components. For this reason, 
both the data extracted from the experimental campaign and the data 
extracted from the mesoscopic scale finite element analysis have been 
included in a user subroutine in order to incorporate the viscoplastic 
material model for porous materials in a commercial finite element 
software (Abaqus®). 

This task has been carried out by means of three different subroutines 
implemented in Abaqus®. First, a CREEP subroutine was developed to 
define and implement a user-defined viscoplastic behaviour, which is 
explained in section 3.1.1. Secondly, a USDFLD subroutine was written 
to define a field variable that represents the evolution of the relative 
density from eq. 8. Finally, the SDVINI subroutine was required to define 
the initial values of the state variables, which by default were initialised 
with a value of 0.0. In this case, the initial relative density is initialised 
with a value close to the Tap density of the metal powder to be modelled. 
The hydrostatic (f) and deviatoric (c) parameters are stored in these state 
variables as well. The values of these parameters are calculated from the 
information obtained in the MPFEM model, which depends on the 
relative density and temperature, as shown in Figs. 8 and 9. 

4. Validation of FEM model 

For the validation of the constitutive description of the metallic 
powder and its numerical implementation, the non-extended and 
extended material models have been applied to the design of a casing 
used in aircraft engines, in particular, the turbine casing. Extended is the 
term used to designate the inclusion of the mesoscopic information 
mentioned in paragraph 3 in the material model. This housing was 
manufactured using the powder metallurgical HIP route as a demon-
strator for the HUC project [29], which is part of the CleanSky initiative 
funded by the EU Commission. As the casing is a revolution part, axial 
symmetry has been employed to model the component to reduce the 
computational cost of the calculations. Therefore, the component of 
revolution has been modelled as a section cut in 2D. Fig. 8 shows the 3D 
geometry of the Astroloy cannister and powder assembly in its unde-
formed configuration, i.e., before the HIP process. Fig. 9 shows the mesh 
used to model this assembly in its undeformed (left) and deformed 
(right) configurations. 

To model the HIP process, a hydrostatic pressure has been applied 
along the entire outer surface, which varies in time according to the HIP 

cycle employed. For the thermal simulations, heat conduction has been 
considered in the interior of the solid, and radiation and convection heat 
transfer mechanisms with the environment. To define these heat transfer 
mechanisms (convection and radiation) with the environment, a con-
vection factor of 100 W/m2⋅K and an emissivity of 0.4 have been defined 
for the external face, which is totally exposed, and an emissivity of 0.2 
for the case of the internal face. Finally, a time-varying ambient tem-
perature is imposed according to the HIP cycle used. 

As for the initial relative density, this has been defined with a value 
of 0.64, which was calculated once the amount of powder that has been 
introduced into the canister was known. 

The dimensions of the compacted component, whose maximum 
diameter is in the order of 1500 mm, were measured using 3D scanning 
techniques. The .stl file generated by the 3D scanner contains a point 
cloud, which has been processed and compared with data obtained in 
the FEM calculations. 

4.1. Results for the non-extended model 

In these simulations, the hydrostatic (f) and deviatoric (c) parameters 
(see eq. 3) of the Astroloy viscoplastic model are independent of tem-
perature, and the elastic and thermophysic properties are not density- 
dependent. Fig. 10 shows the results obtained with this “non-extended 
model”. In this case, as shown in the histogram in Fig. 10b, deviations 
are found in the range from − 9 mm to +6 mm, although most of the 
deviation accumulates in the range of 3–6 mm. This range of deviation 
would be excessive for applications such as the Near-Net-Shape HIP. 

4.2. Results for the extended material model 

As can be seen in Fig. 11, the extended material model provides a 
higher accuracy, with a maximum deviation of 4.5 mm. This maximum 
deviation is located near the filling tubes. Neglecting these very localised 
details, which have not been included in the model, the histogram next 
to the colour bar in Fig. 10a shows that the accuracy of the model is 
within the range of ±2 mm. This is a very high accuracy for a part of 
1500 mm in diameter. Moreover, in the central area where the Astroloy 
component is located, the deviation of the numerical model is in the 
range of 1 mm. As concluded, the accuracy of the extended model is 
higher than that of the non-extended material model, being the former 
applicable for Near-Net-Shape processes. (See Figs. 12 and 13.) 

5. Conclusions 

A multiscale modelling approach is developed to simulate the 
distortion taking place in the densification of a component during NNS- 
HIP (Near Net Shape Hot Isostatic Pressing). The model considered is 
able to reproduce the distortions with high accuracy (errors less than 
0.2%). Furthermore, the model has been extended to incorporate the 
results from the mesoscopic simulations by including the effect of rela-
tive density. The extended model has been shown to be three times more 
accurate than the original model without the information from the 
mesoscopic model, see Figs. 10 and 11. 

The obtained results indicate that the proposed constitutive model 
together with its numerical implementation in finite element calcula-
tions provide an accurate tool that will enable the design of the neces-
sary tooling for the NNS-HIP without excessive computational cost. 

The mesoscopic model used in the current approach, albeit consid-
ering a very simple arrangement of particles, is shown to be accurate 
enough to describe the effect of porosity, strain rate and temperature on 
the mechanical response of an aggregate of spherical powder particles 
during the densification process. 
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