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A B S T R A C T

The monitoring of overhead contact lines (OCL) is a key part of railway infrastructure
maintenance. This paper proposes a methodology to assess the lateral geometry of contact wire,
the so-called stagger, by using the dynamic response of a pantograph. The methodology is tested
in a validated virtual environment that resembles the behaviour of the pantograph when it
interacts with the OCL. A signal processing is developed to define features relating the lateral
position of the contact wire with the vertical acceleration of the contact strip. It is demonstrated
that these features have a clear and close connection with the lateral position of the contact
wire. Subsequently, model-driven machine learning algorithms are defined using these features
to address the OCL stagger prediction and the detection of out-of-range lateral displacement due
to a faulty steady-arm. The methodology shows a good prediction performance in the estimation
of the stagger amplitude/central position and the steady-arms diagnosis. The prediction of the
stagger amplitude is performed with a root-mean-square error of 4.7(10)mm. In addition, the
area under the Precision–Recall curve is 0.952 CI95 [0.940, 0.962] for the steady-arms diagnosis.

. Introduction

The overhead contact line (OCL) is the infrastructure responsible for the energy supply in most electrified railway systems.
ig. 1(a) shows a scheme of a simple alternating current (AC) OCL type. Two main types of wires compose the OCL, the contact
ire (CW), which directly interacts with the pantograph, and the messenger wire (MW), which bears the system weight and transmits

t to the masts. Droppers are responsible for connecting both wires. On the vehicle side, a pantograph is mounted on the roof of the
ehicle for collecting the energy supplied by the OCL (Fig. 1(b)). The pantograph is formed by articulated arms that are uplifted
nd pushed against the OCL by a drive. The upper part of the pantograph, the panhead, is formed by one or several contact strips
hat slide along the OCL.

Concerning contact strips, two parts are distinguishable in their design. The carrier, a metal skeleton generally made of aluminium
hat holds the second part, which is a carbon-based strip band designed to contact the CW. The CW material is a metal alloy,
enerally, CuAg made of. The sliding interaction between both contacting surfaces leads to a significant amount of wear that is
ainly located at the contact strip side [1,2]. To achieve uniform wear of the contact strip, the CW follows a zig-zag lateral pattern,
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Fig. 1. Schematic representations of the overhead contact line (OCL) (a) and the pantograph (b).

known as stagger, that prevents from grooving. The stagger is provided by the steady-arms (SAs), which impose the lateral position
while allowing vertical deflection. The maximum value of the stagger is constrained by safety reasons since an excessive stagger
can lead to a pantograph dewirement, which in turn might result in the OCL destruction. Therefore, the stagger is one of the most
important subjects of monitoring for infrastructure maintainers [3]. Some papers establish a further distinction between the stagger
as measured when no vehicle is interacting with the OCL, and the resulting one when the pantograph interacts with it [4–6]. The
latter is known as dynamic stagger, and it is the one considered in the present article.

In the last years, several approaches have been developed for dynamic stagger monitoring. Most of them are based on video
processing methodologies [4,6,7]. They provide high accuracy and are contactless. A different approach is due to Bocciolone
et al. [5,8] that uses force transducers based on fibre Bragg grating. The trace of the stagger is significant in force measurements at a
frequency dependent on the vehicle speed, and a distance equals to twice the mast separation. At most, the corresponding frequency
is slightly higher than 1 Hz. The methodology of Bocciolone et al. [5,8] measures the force due to contact and strip supports.
Subsequently, by applying moment equilibrium, the force application position is estimated, i.e. the dynamic stagger. The latter
methodology, which uses signal processing instead of video analysis, has the main advantage of requiring much less computational
effort.

Fibre Brag grating is intended to replace traditional electrical sensor set-ups [9]. The disadvantage of electrical sensors is that
they have to deal with electrical insulation issues. Nonetheless, electrical measurement set-ups like those based on capacitive
accelerometers are more affordable in economic terms [5]. Therefore, acceleration signals obtained by traditional electrical sensors
are still an interesting choice to monitor OCL status.

Concerning the OCL monitoring based on pantograph dynamics response, Carnevale et al. [10], Song et al. [11,12] and Wang
et al. [13] propose methodologies based on the analysis of panhead accelerations to detect local OCL defects. Another application
is due to Wang et al. [14] for the identification of characteristic structure wavelengths. However, under the authors’ knowledge,
there are no previous attempts to estimate the stagger based on the acceleration response of the pantograph. Probably, this is due to
the fact that the stagger frequency acts in a low-frequency range, where the dynamic response has an almost negligible magnitude.
Therefore, inertial measurements are not often considered suitable for stagger estimation.

This paper tackles this gap in the state-of-the-art by proposing a methodology for the OCL stagger estimation based on the
dynamic response of the pantograph, concretely, the vertical contact strip accelerations. The proposal uses data simulated in a
virtual environment recreating the pantograph-OCL interaction, which is validated by the standard EN-50318-2018 [15]. This
standard establishes a range of validation from 0 Hz to 20 Hz, but it can be extended by including a more detailed description of
the pantograph [16], and by a careful selection of the contact coefficients, the time-step length and the finite element mesh [17,18].
The validity of the methodology is further guaranteed by considering diverse sources of structural uncertainties and analysing its
performance in low, medium and high speeds conditions. The analysis of the panhead accelerations relies on the Continuous Wavelet
Transform (CWT), which has been previously used in OCL studies [11,13,14,19]. More specifically, a strong relation between OCL
stagger and panhead accelerations is revealed by the Scale Average Wavelet Power (SAWP) [20]. Signal processing based on SAWP
is applied successfully by Molodova et al. [21] on the rail surface defects detection. The proposed methodology takes advantage
of the impact of stagger on SAWP results. It defines variable predictors of the OCL that machine learning models employ in the
stagger monitoring and diagnosis. In this regard, the virtual environment is used to generate training and validation datasets.
They encompass a comprehensive range of OCL lateral configurations and uncommon circumstances like those related to disturbed
steady-arms.

The use of machine learning models for monitoring and diagnosing the stagger has been mainly constrained to artificial neural
networks for image processing [6,22,23]. They monitor the contact point between the pantograph and the contact line. With
the estimation of the contact point, the dynamic stagger can be predicted. The main disadvantage of these approaches is the
computational cost of training convolutional neural networks together with a large number of human labelled images. This is also
an issue for support vector machines when several features are extracted from images [4]. In order to overcome these drawbacks,
a different approach is proposed in this article.

In recent years, an active field of research has developed around the progressive automation of machine learning. AutoML
frameworks initially emerged so that novice users could create useful models, while experts could use them to speed up their
tasks. Nonetheless, as machine learning pipelines are growing in complexity and computational cost, AutoML is becoming a
2
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Fig. 2. Scheme of the proposed methodology.

complementary tool that leverages humans’ combined domain and technical knowledge [24]. AutoML is quickly gaining ground
in a wide range of industrial applications. Some examples can be seen in the fields of medical image classification [25], online
travel mode detection [26] and customer delivery satisfaction [27].

The article proposes the use of AutoML frameworks for an accurate and efficient estimation of the stagger and the diagnosis
of steady-arms. To the authors’ knowledge, it is the first time that AutoML frameworks are applied for the health estimation of
railway infrastructure. As a contribution to the state-of-the-art in the OCL monitoring, this article introduces the use of tabular
machine learning models to estimate the stagger and diagnose of steady-arms by using time series characteristics extracted from
accelerometers. The obtained results confirm the feasibility of this approach.

Fig. 2 outlines the structure of the paper, which is divided into three main parts. Firstly, the definition of the mathematical
model employed to resemble real panhead accelerations (Section 2). Secondly, the description of the procedure for the signal
processing based on CWT and SAWP (Section 3). It follows the analysis of the dependence of the proposed signal processing on
speed, pantograph features and OCL geometrical uncertainties (Section 4). Thirdly, features are defined for the training of the
machine learning algorithms and their performance is assessed (Section 5). Finally, the discussion and conclusions are presented in
Sections 6 and 7, respectively.

2. Mathematical model of the OCL and pantograph

In this section, the mathematical modelling of the OCL structure is presented. Subsequently, the procedures to perform the initial
static calculation and the dynamic interaction are exposed. In addition, the pantograph model is also explained.

2.1. OCL model description

There are several common configurations of OCL. The standard EN 50318-2018 [15] takes into account three types, simple and
stitched AC OCL and double contact wire OCL. In this study, the simple AC OCL is used to reproduce the dynamic pantograph-OCL
interaction. Nevertheless, the conclusions drawn by this work apply to other OCL types. Fig. 1(a) shows a graphical representation
of the simple AC OCL type.

Concerning the mathematical modelling, the CW and MW are modelled with Euler–Bernoulli beam finite elements (FE). Most
models included in the benchmark presented by Bruni et al. [28] use this choice. Nevertheless, if large deformations occur, the
absolute nodal coordinate formulation [29–31] is a more suitable choice. The stiffening of the wires due to tensioning devices is
included by adding a geometric stiffness matrix. The elementary matrices definitions can be found in [32]. The mesh uses 20 and 10
FE to describe CW and MW sections between adjacent droppers, respectively. This configuration guarantees the validity of the model
up to about 93 Hz, 185 Hz and 278 Hz for speeds of 100 km∕h, 200 km∕h and 300 km∕h, respectively. Bar elements with zero stiffness
under compression model the droppers. These components are responsible for the non-linear behaviour of the OCL structure. At
the joining positions between wires and droppers, masses should be introduced to account for clamping elements. Concerning the
masts, they can be represented as high stiffness elements constraining the vertical motion of the MW. The SA is introduced here as a
mass–spring element. All the parameters required for the formulation of the OCL are taken from the standard EN 50318-2018 [15].
3
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The OCL model is formulated as a 2D system that neglects lateral OCL dynamics. This choice is justified for several reasons.
irstly, the proposed methodology only uses the pantograph vertical response, which is not thought to be highly affected by OCL
ateral dynamics. Secondly, the benchmarked models in Bruni et al. [28] show a reduced impact of considering lateral dynamics on
he contact force up to 20 Hz. Therefore, although some results differences might be expected if considering lateral dynamics, the

main conclusions should not lose their validity. And thirdly, the benefits of implementing OCL lateral dynamics do not seem to be
worth the involved computational cost, which is an important matter when dealing with machine learning algorithms.

Despite neglecting the lateral OCL dynamics, the pantograph vertical response accounts for the OCL lateral geometry. This is
achieved by shifting the contact forces acting positions along the pantograph strips accordingly to the lateral geometry imposed by
the stagger. This approach is also used in 2D OCL models by Cho [33].

2.2. Initial static problem

The calculus of the static problem refers to those procedures intended to obtain the deformed position of the OCL under
gravitational load, and the extraction of non-defined parameters to meet with the required initial position. The latter is the case
of the simple AC OCL defined in EN-50318-2018 [15]. The specifications refer to the height of the CW at dropper positions. The
dropper lengths must be calculated such that they meet that requirement. In this work, a similar procedure to the one explained by
Ikeda [34] is followed. Firstly, Ikeda [34] calculates the necessary dropper forces to obtain the desired initial position. Once these
forces are known, the initial position of the MW and CW are calculated. Subsequently, the length of each dropper is derived, which
enables the calculation of the dropper stiffness as

𝑘d.𝑑 = 𝐸d𝐴d∕𝐿d.𝑑 , (1)

where 𝐴d is the cross-sectional area of the dropper, 𝐸d is the dropper Young’s modulus and 𝐿d.𝑑 is the length of the 𝑑th dropper.
After obtaining the droppers stiffness, the dropper stiffness matrix, 𝐊d, is built using bar elements. The matrix 𝐊d is responsible for
the coupling of 𝐊MW and 𝐊CW, the MW and CW stiffness matrices, respectively. The static equilibrium of the OCL reads

[

𝐊MW +𝐊d.MW 𝐊d.cross
𝐊d.cross 𝐊CW +𝐊d.CW

] [

𝐪CW
𝐪MW

]

= 𝐊c𝐪c = 𝐟bal + 𝐟g, (2)

where 𝐊c and 𝐪c denote the stiffness matrix and generalized coordinates of the OCL, respectively (subscript ‘c’ refers to catenary),
and 𝐟g contains the gravity loads. The vector 𝐟bal = 𝐟bal.s+ 𝐟bal.d, being 𝐟bal.s = 𝐛sℎmast𝑘s and 𝐟bal.d = 𝐊d𝐋d. The vectors 𝐟bal.s and 𝐟bal.d are
the balancing forces of the mast supports and droppers, respectively. They impose the initial state at both components. The mast
support stiffness is denoted as 𝑘s, 𝐛s is a Boolean vector with non-zero values at the vertical degrees of freedom (DoF) corresponding
to the mast supports, ℎmast is the MW height at the mast in relation to the CW, and 𝐋d introduces the initial elongation of droppers
to the bar elements.

Up to this point, the calculation concerns the nominal definition of the OCL. However, there are geometrical uncertainties that
affect both static and dynamic results. The pantograph-OCL dynamic interaction is affected most by the departure of the dropper
length and the mast height from their nominal values [35]. The deviation in mast height is introduced into ℎmast , which becomes
a vector since each mast turns to have a different height. Regarding deviations in dropper lengths, it forces the redefinition of 𝐊d
and 𝐋d.

2.3. Pantograph model description

The modelling of the pantograph is addressed in two directions. Firstly, the lower part of the structure, which encompasses
the upper and lower arms, is considered using a lumped mass model. Secondly, the panhead, formed by the contact strips and the
elastic elements attaching strips to the upper arm. Concerning contact strips, solid rigid and flexible vibration modes describe their
motion. Elements attaching the contact strips to the upper arm are modelled as Kelvin–Voigt interactions, with stiffness 𝑘3 and
viscous damping 𝑐3. A FE model obtains the contact strip flexible vibration modes by using Euler–Bernoulli beam FEs.

The pantograph model scheme is shown in Fig. 3(a). The parameters of the lumped mass model are taken from the standard [15],
with some modifications. Changes affect, firstly, the terms 𝑘3 and 𝑐3, which are divided by four to share out their contributions among
the attachment positions, and secondly, 𝑚3 and 𝐼3, whose values are obtained by the FE model resulting in 3.9 kg and 0.65 kgm2,
respectively.

Fig. 3(b) depicts the shape of the modelled pantograph contact strips. There are three main parts, two lateral horns, the central
graphite strip and the central carrier. Horns and the central carrier are formed by a extrude beam made of the same material. Fig. 3(c)
shows the normalized modal shapes of the contact strips along the length of the graphite strip. Only are represented those modal
shapes whose corresponding natural frequency is below 300 Hz. The length of the graphite strip and the width of the pantograph
contact strips are set in 1.11 m and 1.62 m, respectively. It is assumed that horns have quarter circular shapes. The cross-sectional
data necessary for the formulation of the FE is given in Table 1.

Regarding the lumped mass model, the static force applied at the lowest lumped mass, 𝑓sta, is responsible for keeping the contact
force around its nominal value. It is calculated as indicated by the standard EN-50367 [36] as

𝑓sta = 9.7 ⋅ 10−4𝑉 2 + 70 in [N], (3)
4

where 𝑉 [km/h] is the pantograph forward speed.
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Fig. 3. (a) View of the lumped mass model of the pantograph. (b) Scheme of the contact strip implemented design. (c) Normalized modal shapes of the contact
strips vibration modes.

Table 1
Mechanical and geometrical properties of the pantograph contact strips.

Young’s modulus Density Height Width Thickness
(GPa) (kg/m3) (mm) (mm) (mm)

Graphite 12.7 2000 20 60 –
Aluminium 68 2700 22 60 3

The generalized coordinates defining the pantograph motion are

𝐪p =
[

𝑤1 𝑤2 𝑤3.t 𝜃3.t 𝜼t 𝑤3.l 𝜃3.l 𝜼l
]

, (4)

where ‘t’ and ‘l’ refer to the trailing and leading contact strips, respectively. The lumped mass displacements are 𝑤1, 𝑤2 and 𝑤3,
and the strip rotation is 𝜃3. The vector 𝜼 includes the modal coordinates of the strips.

The mass matrix of the system simply reads

𝐌p = diag
([

𝑚1 𝑚2 𝑚3 𝐼3 𝟏 𝑚3 𝐼3 𝟏
])

, (5)

where the operator ‘diag’ builds a diagonal matrix. Since the flexible modal shapes are obtained under free boundary conditions,
they are orthogonal to rigid body motions, leading to uncoupled rigid and flexible motions. The normalization of the modal shapes
results in the identity matrix describing their inertia.

The pantograph stiffness matrix is defined by using the minimum potential energy principle as

𝐊p =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘1 −𝑘2 0 0
−𝑘2 𝑘2 0

0 0 𝟎2×2
𝝎2

𝟎2×2 0
0 0 𝝎2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ 𝑘3
∑

𝑖=t,l

∑

𝑗=1,2
𝐍T
𝑖𝑗𝐍𝑖𝑗 , (6)

where

𝐍t.𝑗 =
[

0 0 1 𝑦cs.𝑗 𝐒(𝑦cs.𝑗 ) 𝟎
]

, (7)

𝐍l.𝑗 =
[

0 0 𝟎 1 𝑦cs.𝑗 𝐒(𝑦cs.𝑗 )
]

, (8)

which multiplied by 𝐪p yield the relative displacement of the 𝑗th attachment. The vector 𝐒(𝑦cs) contains the contact strip modal shape
values at 𝑦cs, which is the lateral position measured from the centre of the contact strip. Because of the modal shape normalization,
𝝎2 = diag

([

𝜔2
1 ⋯ 𝜔2

𝑁m

])

, where 𝑁m is the number of modes introduced at each strip. The pantograph damping matrix, 𝐂p, has an

analogous definition to 𝐊 .
5
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2.4. OCL-pantograph dynamic interaction

The dynamic formulation of the OCL requires the assembly of MW, CW and droppers mass matrices, 𝐌CW, 𝐌MW and 𝐌d,
respectively, which should also include the inertia terms of clamping devices and SAs. In general terms, the definition of 𝐌c is
analogous to that of 𝐊c pointed out in Eq. (2). Regarding the damping matrix, it is defined assuming proportional damping type as

𝐂c = 𝛼c𝐌c + 𝛽c𝐊c, (9)

where 𝛼c and 𝛽c are experimental OCL damping parameters, which are given in EN-50318-2018 [15].
In order to solve the OCL-pantograph interaction problem, the coupling between pantograph and OCL must be defined. The

oupling is due to contact forces and it is modelled with a penalty method, as shown in Fig. 3(a), in which the 𝑖th contact force
reads

𝑓cont.𝑐 =

{

𝑘cont𝛿𝑐 if 𝛿𝑐 > 0
0 if 𝛿𝑐 ≤ 0,

(10)

where 𝑘cont is a contact stiffness and 𝛿𝑐 = 𝑤p.𝑐 −𝑤c.𝑐 −𝑤irr.𝑐 , being 𝑤c.𝑐 and 𝑤p.𝑐 the vertical displacements of CW and pantograph
at the 𝑐th contact position, respectively, and 𝑤irr introduces surface irregularities. If 𝛿𝑐 ≤ 0, a contact loss takes place and the
contact force vanishes, which introduces a non-linear behaviour in the problem. The contact stiffness is set in 3 MN/m, which is in
accordance with the order of magnitude predicted by the Hertzian theory [18].

The other source of non-linearities is due to the droppers, which in practice present an almost null stiffness when they are under
compression. This behaviour is known as slackening. Similarly to the contact problem, slackening is modelled with a bi-linear
stiffness. The elastic force of each dropper reads

𝑓d.𝑑 =

{

𝑘d.𝑑
(

𝑤MW
d.𝑑 −𝑤CW

d.𝑑 − 𝐿d.𝑑
)

if axially loaded
0 if slackening,

(11)

where 𝑤MW
d.𝑑 and 𝑤CW

d.𝑑 are the vertical displacements of MW and CW at the clamping positions of the 𝑑th dropper, respectively.
The system of equations introduces the dropper slackening by balance forces, 𝐟sd, that make zero the elastic force due to slackened
roppers. In this way, the system matrices become invariant, avoiding continuous redefinition of the Jacobian matrix. The system
f equations to be solved reads

[

𝐌c 𝟎
𝟎 𝐌p

] [

�̈�c
�̈�p

]

+
[

𝐂c 𝟎
𝟎 𝐂p

] [

�̇�c
�̇�p

]

+
[

𝐊c 𝟎
𝟎 𝐊p

] [

𝐪c
𝐪p

]

=
[

𝐟bal + 𝐟g + 𝐟cont.c + 𝐟sd
𝐟sta + 𝐟cont.p

]

, (12)

here 𝐟sta includes the upward lifting force of the pantograph defined by Eq. (3). The vectors 𝐟cont.c and 𝐟cont.p are the projections of
he contact forces over the OCL and pantograph structures, respectively; which are responsible for the coupling between them. The
q. (12) is further compacted leading to

𝐌sys�̈�sys.𝑡 + 𝐂sys�̇�sys.𝑡 +𝐊sys𝐪sys.𝑡 = 𝐟sta.sys + 𝐟cont.sys + 𝐟sd.sys, (13)

here 𝐪sys.𝑡 is the vector containing the unknown generalized coordinates of the system at the instant 𝑡. The vectors 𝐟bal, 𝐟g and 𝐟sta
re time independent, and are grouped into 𝐟sta.sys. By using a second-order numerical integration method, the time derivatives of
sys.𝑡 in Eq. (12) can be written in terms of the their value in the previous instant, which leads to a general expression such as

𝐊Int𝐪sys.𝑡 = 𝐌sys ̂̈𝐪𝑡−𝛥𝑡 + 𝐂sys ̂̇𝐪𝑡−𝛥𝑡 + 𝐟sta.sys + 𝐟cont.sys + 𝐟sd.sys, (14)

here 𝛥𝑡 is the time-step and 𝐪sys.𝑡 is defined in term of the kinematic solution at the previous instant, 𝑡 − 𝛥𝑡, whose influence is
ntroduced by ̂̈𝐪𝑡−𝛥𝑡 and ̂̇𝐪𝑡−𝛥𝑡. The definition of these terms, as well as 𝐊Int , depends on the employed numerical integrator. Their
efinitions are included in Appendix A according to the numerical integrator based on the Newmark’s method, which is the most
fficient choice according to Gregori et al. [37]. The time step is set in 0.25 ms, which guarantees convergence of the solution in
he high-frequency domain [17].

The large number of DoF of OCL models and the non-linear behaviour of 𝐟cont.sys and 𝐟sd.sys make the Newton–Raphson method an
nsuitable choice to solve Eq. (14). This issue can be overcome by taking advantage of the bi-linear nature of these non-linearities as
roposed by Gregori et al. [37]. In that methodology, the right-hand side of Eq. (14) is rewritten by splitting it into two components,
ne purely linear and another in which bi-linear forces are involved. Eq. (14) becomes

𝐪sys.𝑡 = 𝐪sys.kn +
𝑛cont
∑

𝑐
𝑓cont.𝑐

(

𝐮∗𝑐c
𝐮∗𝑐p

)

+
𝑛sd
∑

𝑑
𝑓sd.𝑑

(

𝐮∗𝑑c
𝟎

)

, (15)

here 𝑛cont and 𝑛sd are the number of contact points and slackened droppers, respectively,

𝐪sys.kn = 𝐊−1
Int

[

𝐌sys ̂̈𝐪𝑡−𝛥𝑡 + 𝐂sys ̂̇𝐪𝑡−𝛥𝑡 + 𝐟sta.sys
]

, (16)

nd those vectors denoted as 𝐮∗ are the instantaneous linear responses of the system at positions where bi-linear forces, 𝑓cont.𝑐 and
sd.𝑑 , are acting. The reduction of the computational cost provided by the method of Gregori et al. [37] relies on the fact that

∗

6

alculation of 𝐮 is performed once during a pre-calculus stage. To solve Eq. (15), it is necessary to obtain the values of the forces
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Fig. 4. (a): Unfiltered time-domain contact force results (Dashed black lines denote mast positions). Speed: 300 km/h. (b): Contact force PSD in the wavelength
domain.

due to contact and those balancing the dropper slackening. Both are obtained after introducing the definition given in Eq. (15) into
Eqs. (10) and (11), which results in a system of equations that is generally defined as

[

𝐈𝑛cont − 𝐀 𝐁
𝐂 𝐈𝑛sd − 𝐃

] [

𝐟cont
𝐟sd

]

=
[

𝐄
𝐅

]

. (17)

The advantage of this procedure lies in the fact that convergence is performed over Eq. (17) instead of Eq. (13). The former has
𝑛cont + 𝑛sd unknowns, whereas the latter involves all the system DoF. For a detailed explanation of the methodology, the reader is
referred to the work of Gregori et al. [37]. Nevertheless, in Appendix A the definition of 𝐮∗ in Eq. (15) and the terms in Eqs. (16)
and (17), are presented as implemented here to consider multiple contact points, flexible contact strips and the Newmark integrator
scheme. The correctness of the formulated mathematical model is confirmed by the standard EN-50318-2018 [15]. All the results
are within the range given by this standard, and they are included in Appendix B.

3. The trace of the stagger in the pantograph accelerations

In this section, the OCL-pantograph interaction model defined above is used to determine whether the stagger has a noticeable
influence on the system response. More specifically, the goal is to find a clear trace of the stagger on the vertical panhead
accelerations. The panhead accelerations are predicted on contact strips at attachment points with the upper arm. The lateral
displacement of the contact position oscillates with a frequency given by the ratio between the vehicle speed and the stagger
wavelength; 𝑉 ∕2𝐿span, hereinafter known as stagger frequency. For the span length used here, 55 m, this frequency lies between
0.25 Hz and 0.75 Hz for the speed range from 100 km/h to 300 km/h, respectively. Any dynamic effect caused by the stagger must
be related to this frequency (or wavelength). Firstly, the dynamic response is analysed with conventional frequency analysis (Fourier
analysis), and secondly, via time–frequency analysis (Wavelet analysis).

3.1. Conventional Fourier analysis

Contact forces, elastic forces at the strip attachment and strip accelerations are analysed in the time and frequency domains, the
latter is made via the Power Spectral Density (PSD). For the sake of clarity, results are presented in terms of wavelength instead
of frequency. Regarding contact forces, the results in Fig. 4(a) and (b) show the OCL-pantograph contact forces at the leading and
trailing contact strips in the time (unfiltered) and frequency domains, respectively. The dynamic nature of contact forces is clear
in Fig. 4(a). By studying the frequency-domain in Fig. 4(b), significant dynamic features are distinguished. They are caused by the
pantograph and OCL dynamics and the characteristic lengths of the latter: span length and distance between droppers. However, at
the stagger wavelength, there is no trace of a significant dynamic contribution.

Concerning the elastic forces at the strip attachment, Fig. 5(a) and (b) show forces due to the elastic part of the attachment
elements at both sides of the leading strip, in time and frequency domains, respectively. In this case, the effect of the stagger is very
noticeable. In the time-domain, the most significant dynamic feature coincides with the stagger wavelength in both forces. Moreover,
this feature is out-of-phase in both signals. It occurs because each attachment element undergoes the highest compression when the
contact wire approaches its location. Since the main contribution to the spring force is due to the stagger, it can be used to estimate
the stagger, as done by Bocciolone et al. [5]. However, force measurements require invasive and/or expensive devices.

On the contrary to force measurements, acceleration ones have the advantage of being non-invasive and having a significantly
lower cost. Fig. 6(a) and (b) show the time and frequency domains of the contact strip accelerations, respectively. The dynamic
response of the acceleration is dominated by wavelengths below 10 m, which can be due to dropper spacing and flexible modes
7

of the strips. Nevertheless, there is a significant dynamic response above 10 m. At 55 m, there is a peak due to the span length.
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Fig. 5. Elastic component of the attachment forces at the leading strip. Speed: 300 km/h. (a): Unfiltered time-domain results (Dashed black lines denote mast
positions). (b): PSD in the wavelength domain.

Fig. 6. Acceleration results for the leading contact strip at attachment positions. Speed: 300 km/h. (a): Unfiltered time-domain results (Dashed black lines denote
mast positions). (b): PSD in the wavelength domain.

Moreover, noticeable responses are observed at 11 m and 13.7 m, which for 300 km/h corresponds to 7.5 Hz and 6.1 Hz. These
frequencies are nearby the panhead solid vibration modes. However, at the stagger wavelength, there is an almost negligible signal
content. This is the reason why using conventional Fourier analysis is unfeasible to estimate the OCL stagger.

3.2. Wavelet analysis

Time–frequency analysis is used here to find patterns in the acceleration signals that remain hidden through frequency analysis.
The continuous wavelet transform (CWT) is chosen since it has a high level of resolution. Its definition reads

𝑊 (𝑠, 𝜏) = 1
√

𝑠 ∫

∞

−∞
𝑥 (𝑡)𝜓∗

( 𝑡 − 𝜏
𝑠

)

d𝑡, (18)

here 𝑥(𝑡) is the analysed signal; 𝜓(𝑡) is a mother wavelet, ∗ denotes the complex conjugate, 𝜏 is the location parameter related
ith time, and 𝑠 is the dilation parameter related to frequency. In this work, the Morlet function is used as the mother wavelet.

Fig. 7(a) and (b) shows the scalogram of the wavelet power spectrum, 𝑊𝑃 (𝑠, 𝜏) = |

|

|

𝑊 (𝑠, 𝜏)2||
|

, for the accelerations shown in
ig. 6(a). Due to the OCL periodicity, the wavelet power expresses periodic spatial behaviour in some frequency ranges. This spatial
eriodicity of the wavelet power is assessed by conventional Fourier analysis converting the spatial-domain into wavelength-domain.
t each scale of the wavelet power, the spectral density is calculated as

𝑊𝑃 𝑗 (𝜆) = PSD
[

𝑊𝑃
(

𝑠𝑗 , 𝜏
)]

, (19)

where 𝜆 refers to wavelength. Fig. 7(c) and (d) show 𝑊𝑃 𝑗 (𝜆) in which the space-domain in Fig. 7(a) and (b) is converted into
wavelength-domain. The results in Fig. 7(c) and (d) confirm that the periodicity of the wavelet power is due to geometrical features
8

of the OCL. The periodic behaviour is caused, on the one hand, by the span at its wavelength and first four upper harmonics, and on
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Fig. 7. Wavelet power of right (a) and left (b) accelerations of the leading contact strip and their Power Spectral Density representation (c) and (d), respectively.

the other hand, by the stagger wavelength. Whereas the former is dominant in periodicity of the dynamic behaviour above 50 Hz,
the stagger wavelength causes a larger periodicity of the wavelet power below 50 Hz.

At this point, it is proved that the strength of the acceleration signals at strip attachment positions below 50 Hz is highly
dominated by the stagger. Scale-averaged wavelet power (SAWP) can exploit this fact. It is defined as

𝑊
2
(𝜏) =

𝛿𝑗𝛿𝑡
𝐶𝛿

𝑗max
∑

𝑗=𝑗min

|

|

|

𝑊
(

𝑠𝑗 , 𝜏
)

|

|

|

2

𝑠𝑗
, (20)

where 𝐶𝛿 is an empirically derived constant, 𝛿𝑗 and 𝛿𝑡, are the scale and time steps [20]. The SAWP allows to examine fluctuations
in power over a range of scales (from 𝑗min to 𝑗max). The scales are set to capture the fluctuations between 5 Hz and 50 Hz.

Figs. 8(a) and (b) show the resulting SAWP for contact strip accelerations at both attachment positions. In both cases, the SAWP
reaches a local maximum or minimum around the mast positions. As the contact wire shifts toward an accelerometer position, the
related SAWP increases, whereas at the opposite accelerometer, the SAWP falls. Both Figs. 8(a) and (b) also display the raw SAWP
as it is calculated at each time step and the averaged SAWP by using 5 m moving windows with 75% of overlap. The use of moving
windows has a reduced smoothing effect.

Finally, Fig. 8(c) shows 𝑅𝑡stag, which combines SAWP of both accelerometers as

𝑅𝑡stag = log10

(SAWPright
SAWPlef t

)

. (21)

The resulting processed signal has a pattern resembling the lateral position of the contact wire. In fact, it is almost directly
proportional to the contact wire lateral position, but for some small perturbations. This strong relation between the CW lateral
position and 𝑅𝑡stag, makes the latter a powerful tool to define features for estimating the OCL stagger.

The OCL stagger can be non-centred in relation to the pantograph, which occurs during curve negotiation. Fig. 9(a) illustrates
the range of lateral positions where pantograph-OCL contact occurs for centred and non-centred OCL stagger. Fig. 9(b) shows the
9
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Fig. 8. SAWP from 5 to 50 Hz for the right (a) and left (b) positions of the leading contact strip. (c) Ratio between SAWP from (a) and (b), 𝑅𝑡stag. Vertical
black lines denote the mast positions. Blue: raw SAWP signal. Orange: averaged SAWP with moving window (5 m and 75% overlap). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. (a) Frontal view of the pantograph with the range contact position due to centred and non-centred stagger. (b) Top view of the pantograph and the
OCL line geometry for centred and non-centred stagger.

stagger amplitude, 𝑆𝑡amp, and the stagger central position, 𝑆𝑡ct . These values along with the distance between SAs (span length),
are used to define the OCL lateral geometry. Fig. 9(b) also introduces the concept of faulty SA, which is used in Section 5.

The sensitivity of 𝑅𝑡stag to the stagger is studied in Figs. 10(a) to (d), where the colour represents the range of simulated stagger
amplitudes, 𝑆𝑡amp, that encompasses from 0 m to 0.3 m. Figs. 10(a) and (b) address centred stagger, whereas in Figs. 10(c) and (d)
non-centred stagger (𝑆𝑡ct = 0.1 m) is assessed. The results point out a proportional relation between 𝑆𝑡amp and the amplitude of
𝑅𝑡stag. This statement is further confirmed in Figs. 11(a) and (b), which shows the mean of the relative maximums and minimums
in 𝑅𝑡stag as a function of 𝑆𝑡amp for the trailing and leading strips, respectively. Maximums occur when the CW approaches the sensor
on the right side and vice versa. For centred situations, Figs. 11(a) and (b) show that the relation between the extreme values of
𝑅𝑡stag and 𝑆𝑡amp is almost linear. Moreover, mean values of the relative maximums and minimums are equal in magnitude.

As shown in Figs. 10(c) and (d), a non-centred stagger is also reflected by 𝑅𝑡stag. Precisely, in its mean value, which is no
longer zero. Another interesting feature lies in the magnitude of the extreme values with respect to the mean. When the stagger
is shifted from the centre, since the CW moves closer to one of the measurement positions, the corresponding extreme values are
more pronounced than those due to the opposite measurement position. Doubles arrows in Fig. 10(d) point out this phenomenon.
Furthermore, non-centred stagger also affects the linearity between 𝑆𝑡amp and the extreme values of 𝑅𝑡stag. As shown in Figs. 11(a)
and (b), the mean value of the minimums loses its linear relation with 𝑅𝑡stag in non-centred case. Therefore, more complex relations
arise between 𝑆𝑡amp and 𝑅𝑡stag as the CW gets close to the sensor position. Concerning both strips, the amplitude of 𝑅𝑡stag is slightly
higher on the trailing strip than in the leading one. Moreover, the extreme values of the leading strips are sharper, which might
point out a better sensitivity to the stagger. Furthermore, for non-centred stagger situations, linear relation between 𝑆𝑡amp and 𝑅𝑡stag
seems to be less distorted in the leading strip (Fig. 11(b)) than in trailing one (Fig. 11(a)).

3.3. The link between the OCL stagger and pantograph accelerations

The sensitivity of 𝑅𝑡stag to the stagger is because when the CW approaches a measurement position, the measured acceleration-
SAWP becomes maximum, whereas at the opposite measurement position it reaches its minimum value (Fig. 8(a) and (b)). As the
10
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Fig. 10. Impact of the amplitude, 𝑠𝑡amp, and offset, 𝑆𝑡ct , of the stagger on 𝑅𝑡stag. (a) and (b): centred stagger (𝑆𝑡ct = 0 m). (c) and (d): non-centred stagger
(𝑆𝑡ct = −0.1 m). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Mean value of the relative maximums and minimums (extreme values) of 𝑅𝑡stag as a function of the OCL stagger amplitude, 𝑆𝑡amp. ‘Centred. Min.’ is
plotted in absolute value to show the coincidence in magnitude with ‘Centred. Max.’.

CW approaches a measurement position a constructive interference phenomenon arises, and on the opposite measurement position,
destructive interference occurs. This phenomenon is qualitatively illustrated in Fig. 12(a), which depicts the motion of the contact
strip when a force is applied eccentrically on it. The load eccentricity causes a moment load, which in turn involves contact strip
rotation. At the closest measurement position, the displacement due to both rotational and translational motions add up, causing the
mentioned constructive interference. However, at the opposite measurement position, these motions counter each other, resulting
in destructive interference.

The phenomenon introduced above is confirmed by the calculated contact strip accelerances shown in Fig. 12(b). The accelerance
is obtained at an attachment position (𝑦 = 0.55 m) and the excitation takes place at the central position (𝑦 = 0 m) and at
11
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Fig. 12. (a) Scheme of the contact strip motion due to superposition of solid vibration modes with eccentric load (Sensor locations are denoted with red squares).
(b) Accelerance of the contact strip at a measurement position for excitation at three different points.

𝑦cs = ±0.2 m. Statically and for low frequencies, there is no significant difference between accelerances due to the excitation position,
since the response is dominated by the motion of the lower pantograph part. However, above the rigid vibration modes of the strips,
about 5 Hz and 6.5 Hz for the translation and rotational motions, respectively, the system dynamics are controlled by inertia forces
and the phenomenon pointed out in Fig. 12(a) becomes significant. As compared with excitation at 𝑦cs = 0 m, when the loads
shifts toward the sensor

(

𝑦cs = 0.2 m
)

, the accelerance increases. On the contrary, when the load moves away from the sensor, the
accelerance largely decays. Above 50 Hz, flexible modes of the contact strips become dominant and the motion shown in Fig. 12(a)
is no longer relevant. Fig. 12(b) also indicates the frequency range encompassed by SAWP. In this range, the accelerance is affected
by the constructive and destructive interferences, which confirms the suitability of this choice.

4. Dependence of 𝑹𝒕𝐬𝐭𝐚𝐠 on pantograph features, speed and OCL uncertainties

In this section, the sensitivity of 𝑅𝑡stag to different parameters is assessed. Firstly, the impact of pantograph features, specifically,
the mass of the contact strips and the attachment stiffness. Secondly, the OCL geometric random deviation from its nominal
configuration. And thirdly, the vehicle speed.

4.1. Impact of pantograph features on 𝑅𝑡stag

Contact strip wear is an inherent consequence of the OCL-pantograph interaction, and therefore the reduction of the strip mass
over the service life of the contact strip. This fact makes important the analysis of the mass influence on 𝑅𝑡stag. A set of simulations is
performed varying the height of the contact strip section corresponding to graphite. The change of mass is introduced homogeneously
along the whole length of the graphite band. This assumption does not match the real behaviour of strip wear, which is concentrated
mainly in the central part of the strip. Nevertheless, it allows checking the influence of the material loss on the 𝑅𝑡stag qualitatively.
The set of simulations encompasses heights of the graphite band from 2.5 cm to 1 cm, which involves a range of strip masses from
2.55 kg to 4.55 kg. The speed and stagger amplitude are set at 275 km/h and 0.2 m, respectively. The resulting 𝑅𝑡stag is shown in
Fig. 13(a) and (b), for the trailing and leading contact strips, respectively. The results indicate a large influence of the strip mass on
𝑅𝑡stag, which mainly affects the amplitude of the response. The larger the contact strip mass is, the more sensitive 𝑅𝑡stag becomes to
𝑆𝑡amp. The shape of 𝑅𝑡stag remains mostly unchanged for the leading strip, whereas it has a noticeable variation with mass for the
trailing strip.

Concerning the strip attachment stiffness, its value is not expected to change significantly over the service life. Nevertheless, there
might be some dispersion from one pantograph to another and therefore analysing its influence becomes of interest. Figs. 14(a) and
(b) shows the impact of varying the stiffness of the springs in both contact strips. In this case, the influence is almost negligible
for the leading strip and noticeable but still low for the trailing strip. Regarding the attachment damping, it is verified to influence
𝑅𝑡stag even less than the attachment stiffness. This result is coherent with the spring-like nature of the attachment devices, which
have an almost negligible damping ability at the low-frequency range.

The larger influence of the mass on 𝑅𝑡stag is in agreement with its definition. The frequency range from which SAWP is obtained
mainly encompasses the motion above the rigid vibration modes of the contact strips; consequently, SAWP is dominated by the strip
inertia (Fig. 12(b)). The effect of the mass on 𝑅𝑡stag is summarized in Fig. 15, which represents the evolution of the 𝑅𝑡stag extreme
values as function of the contact strip mass for different stiffness. The trends are similar in both leading and trailing strips, but the
influence of the spring stiffness is almost negligible for the leading strip.
12
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Fig. 13. Influence of the contact strip mass on the 𝑅𝑡stag. (a) Trailing contact strip. (b) Leading contact strip. Speed set at 275 km/h. Stagger: 0.2 m. Spring
stiffness: 1.75 kN/m.

Fig. 14. Influence of the spring stiffness on the 𝑅𝑡stag. (a) Trailing contact strip. (b) Leading contact strip. Speed set at 275 km/h. Stagger: 0.2 m. Strip mass:
3.89 kg.

Fig. 15. Mean value of the relative maximum of |

|

|

𝑅𝑡stag
|

|

|

as function of the contact strip mass.

4.2. Impact of OCL geometry randomness on 𝑅𝑡stag

As indicated in Section 2.2, in practice, the OCL installation undergoes departures from its nominal configuration. The
randomness taken into account here is due to mast heights, dropper lengths, CW lateral position imposed by SAs, and CW wear.
Excepting the last one, these uncertainties are introduced by defining standard deviations. Gregori et al. [35] use standard deviations
of 6.6 mm and 2 cm for the dropper length and the mast height, respectively, which in turn are in accordance with experimental
13
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Fig. 16. (a): Vertical static position of the CW after introducing OCL randomness. (b): Stagger considering randomness in the lateral position imposed by SAs.

Fig. 17. Impact of geometrical randomness and CW wear on 𝑅𝑡stag of the leading strip for different speeds.

easurements [38]. Fig. 16(a) shows the initial static position of the CW after including the mast height and dropper length
andomnesses. The standard deviation of the lateral position imposed by the SA is set as a 10% of the stagger amplitude. The
esulting lateral CW position after introducing the latter randomness is shown in Fig. 16(b). Finally, the CW wear is introduced
y using a PSD irregularity method. The PSD is taken from Collina et al. [16], and its amplitude is tuned to get wear levels not
urpassing 3 mm.

Fig. 17 shows the impact of these randomnesses on 𝑅𝑡stag of the leading strip for three different speeds. To assess the importance of
tagger randomness, Fig. 17 also shows the dispersion if stagger keeps its nominal value whereas the other geometrical uncertainties
re introduced. For each speed, one hundred simulations are performed for each case, with nominal and random stagger. The dashed
ine represents the nominal value (no randomness) of 𝑅𝑡stag. Shade plots point out the dispersion of 𝑅𝑡stag by encompassing two
imes its standard deviation. By comparing with the results neglecting stagger randomness, accounting for it significantly increases
he overall dispersion of 𝑅𝑡stag, and its influence tends to grow as the speed decreases. Around the mast position, the dispersion
ntroduced by stagger randomness is the most noticeable, becoming clearly the dominant cause at 100 km/h. The results also
enote a slightly lower scattering as the vehicle speed increases. Despite a certain degree of dispersion, 𝑅𝑡stag seems a robust enough
ndicator to define features for the stagger estimation.

.3. Impact of vehicle speed on 𝑅𝑡stag

The influence of the speed on 𝑅𝑡stag is assessed on Fig. 18. Fig. 18(a) depicts 𝑅𝑡stag of the leading strip for several speeds
rom 40 km/h to 300 km/h. Both maximum values and shape of 𝑅𝑡 do not undergo significant variations due to the different
14
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d

Fig. 18. (a) 𝑅𝑡stag of the leading strip for different speeds. (b) Mean value of the relative maximums of 𝑅𝑡stag as function of the vehicle speed (Solid line) and
ispersion introduced by the geometrical randomness (The interval represents ±2𝜎). Stagger: 0.2 m. Strip mass: 3.89 kg. Spring stiffness: 1.75 kN/m.

Fig. 19. Dataset generation process.

speeds. Therefore, the methodology is sensitive to stagger in the whole range of normal operation speeds. This fact is confirmed by
Fig. 18(b), which shows the mean of the relative maximum in 𝑅𝑡stag for both leading and trailing strips. The maximum values of
𝑅𝑡stag tends to decrease as speed increases, from values of 𝑅𝑡stag about 1.05 to 0.8 for 40 and 300 km/h, respectively. Fig. 18(b) also
shows the dispersion introduced by the geometrical randomness. It is defined as in the previous sections and calculated from one
hundred simulations at each speed. Each error bar encompasses ±2𝜎

(

Max
(

𝑅𝑡stag
))

. The uncertainty introduced by the geometrical
randomness overlaps in a large extent the effect of the speed on Max

(

𝑅𝑡stag
)

, and therefore it will tend to diminish its influence.

5. Model-driven machine learning for OCL geometry estimation and steady-arm diagnosis

This section proposes the use of machine learning (ML) models for the monitoring of the OCL by using panhead accelerations.
More precisely, the acceleration of contact strips at their attachment positions. The definition and validation of the ML models rely
on datasets generated by the virtual environment defined in Section 2. These datasets contain meaningful features of the contact
strip accelerations formulated in terms of the signal processing presented in Section 3.

Three ML models are presented, 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct , which deal with the estimation of the OCL lateral geometry, and 𝑀_SA
that addresses the detection of anomalous lateral CW position imposed by SAs. The outputs of 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct are 𝑆𝑡amp and
𝑆𝑡ct , respectively (Fig. 9(b)). The output of 𝑀_SA is a categorical value that determines whether a certain SA is healthy or faulty
based on the lateral position that it imposes on the CW.

The rest of the section introduces, firstly, the description and definition of the training and validation datasets. The datasets
description concerns the explanation of simulation scenarios, whereas the definition refers to the signal features building the datasets.
Secondly, ML models for 𝑆𝑡amp, 𝑆𝑡ct and SA diagnosis are defined and validated.

5.1. Datasets description and generation

The dataset generation procedure is schematically shown in Fig. 19. It requires the definition of a set of scenarios to be simulated
by the virtual environment. Each scenario establishes a certain number of simulations, 𝑁sim. In turn, each simulation uses different
values of 𝑆𝑡amp and 𝑆𝑡ct , as well as different numbers and positions for the faulty SAs. Subsequently, the simulated contact strip
accelerations are post-processed to obtain their SAWP and 𝑅𝑡stag, from which the ML models input features are defined. Once features
are obtained, they are grouped together with the OCL geometry definition into observations. For the case of 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct ,
the features affect the whole OCL and therefore each simulation results in only observation. However, features used in 𝑀_SA are
different since they concern individual SA positions, hence there will be as many observations as detected SA positions.
15
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Table 2
Simulation scenarios description.

Scenario Description Objective 𝑁sim Generated dataset

1 Feasible stagger 𝑀_𝑆𝑡amp model generation
𝑀_𝑆𝑡ct model generation

600 (100 km/h)
600 (200 km/h) 600
(300 km/h)

Sc1_RD100 (600 obs.)
Sc1_RD200 (600 obs.)
Sc1_RD300 (600 obs.)

2 High disturbed SA 𝑀_SA model generation 500 (100 km/h)
500 (200 km/h)500
(300 km/h)

Sc2_CD100 (5916 obs.)
Sc2_CD200 (6052 obs.)
Sc2_CD300 (5961 obs.)

3 Low disturbed SA 𝑀_𝑆𝑡amp model individual performance analysis
𝑀_𝑆𝑡ct model individual performance analysis
𝑀_SA model individual performance analysis

200 (100 km/h)
200 (200 km/h) 200
(300 km/h)

Sc3_RPD100 (200 obs.)
Sc3_RPD200 (200 obs.)
Sc3_RPD300 (200 obs.)
Sc3_CPD100 (2445 obs.)
Sc3_CPD200 (2454 obs.)
Sc3_CPD300 (2425 obs.)

Sc: Scenario, RD: Regressor Dataset, CD: Classifier Dataset, RPD: Regressor performance dataset, CPD: Classifier performance dataset.

5.1.1. Scenarios configuration
Three different scenarios are configured with complementary objectives ( Table 2). Scenarios 1 and 2 are used to formulate ML

odels for the geometry estimation and the SA diagnosis, respectively. Scenario 3 represents intermediate situations between those
f Scenarios 1 and 2, intending to check the performance of the ML models devoted to geometry estimation and SA diagnosis over
he same data. For each scenario, batches of simulations are carried out for different mean values of 𝑉 , 100 km∕h, 200 km∕h and
300 km∕h. The speed at each simulation is randomly defined according to a normal probability distribution. It results in a standard
deviation of 2.5 km∕h around the indicated nominal speed. The scenarios introduce geometry randomness as defined in Section 4.2.
ach simulation reproduces the dynamic interaction along 770m, i.e. 14 spans. In total, the datasets include 3900 simulations of

the OCL-pantograph dynamic interaction.
Scenario 1 encompasses feasible configurations of the CW lateral geometry. No faulty SAs are introduced. The resulting datasets,

Sc1_RD𝑉 , are employed for the training and cross-validation of the 𝑆𝑡amp and 𝑆𝑡ct ML models, 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct , respectively.
Each simulation randomly picks a value of 𝑆𝑡ct , between −15 cm to 15 cm. Following, 𝑆𝑡amp is also randomly chosen in a range
within ±

(

30 − |

|

𝑆𝑡ct ||
)

cm. This definition limits the nominal CW lateral position to a range of ±30 cm in relation to the pantograph
centre. In these datasets, each simulation provides one observation, which contains 2 target variables to be predicted. Three datasets
are defined with 600 simulations, one for each speed aforementioned. In total, 1800 simulations are carried out.

Scenario 2 accounts for the presence of disturbed SAs, whose lateral positions are significantly modified to increase the population
of faulty samples. The objective is to generate the datasets to train and cross-validate a model for SAs diagnosis, 𝑀_SA. In this case,
each simulation contains three disturbed SAs out of a total of thirteen. As commented in Section 4.2, the lateral CW positions at SAs
are simulated with a certain level of randomness around the design value. The disturbed SAs include an extra random displacement
of ±5 cm on average and 2 cm of standard deviation. The classification is based on two categories, healthy or faulty SAs depending on
whether their deviation over the nominal position is below or above 5 cm, healthy and faulty, respectively. This threshold defining
faulty SAs is taken from Ngamkhanong et al. [39], which in turn obtain it from Australian OCL standards. The variables 𝑆𝑡amp and
𝑆𝑡ct defining nominal stagger are determined as in Scenario 1. Three datasets are generated corresponding to each speed, Sc2_CD𝑉 ,
with 500 simulations per dataset. Each simulation obtains the response at thirteen SA positions per simulation, which means 6500
SA positions to assess. Due to the disturbed SAs and the inherent defined randomness, the faulty SAs represent around 11% of each
dataset.

Scenario 3 is similar to Scenario 2; however, it differs in that only one disturbed SA is introduced. This definition results to about
4% of faulty SAs. The associated datasets, Sc3_RPD𝑉 and Sc3_CPD𝑉 , are used to observe the performance of the models trained in
Scenarios 1 and 2 over the same data, respectively. For this purpose, 200 simulations have been carried out at each speed. It
leads to six datasets. On the one hand, Sc3_RPD𝑉 are involved in the validation of 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct with one observation per
simulation. On the other hand, Sc3_CPD𝑉 perform the validation of 𝑀_SA, with thirteen observations per simulation and therefore
2600 overtaken SA positions. In Table 2, the number of observations of the datasets involved in SA classification is slightly inferior
to the number of SA positions overtaken in simulations. This difference is due to some of the SA positions are not detected in a step
previous to its classification. This step is explained below in Section 5.1.3.

5.1.2. Datasets generation for the estimation of 𝑆𝑡amp and 𝑆𝑡ct
In Sc1_RD𝑉 and Sc3_RPD𝑉 , each observation contains an ensemble of features defined from the SAWP and 𝑅𝑡stag results. A

total of 36 features are considered potentially meaningful for the estimation of 𝑆𝑡amp and 𝑆𝑡ct . The features are equally defined at
each contact strip, and therefore each one has 18 features. The feature description is included in Table 3. These features are the
most common in the analysis of time and frequency domain signals. Most of these features can be obtained straightforwardly from
SAWP and 𝑅𝑡stag at a very low computational cost. However, some of them require a comment. Features 7 and 8 need the choice
of a threshold to define what is taken as relative maximums and minimums. It is defined as a function of the peaks and notches
prominence, and its value is set as 0.2.
16
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Table 3
Features included in the datasets for the ML models (𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct ).

Index Feature Description Index Feature Description

1–2 mean
(

SAWP𝑖
)

Mean value of SAWP
for each 𝑖th sensor

3–4 std
(

SAWP𝑖
)

Standard deviation of SAWP
for each 𝑖th sensor

5 mean
(

𝑅𝑡stag
)

Mean value of 𝑅𝑡stag 6 std
(

𝑅𝑡stag
)

Standard deviation of 𝑅𝑡stag

7 mean
[

max
(

𝑅𝑡stag
)]

Mean of the relative
maximums of 𝑅𝑡stag

8 mean
[

min
(

𝑅𝑡stag
)]

Mean of the relative
minimums of 𝑅𝑡stag

9 Max
(

𝑅𝑡stag
)

Absolute
maximum of 𝑅𝑡stag

10 Min
(

𝑅𝑡stag
)

Absolute
minimum of 𝑅𝑡stag

11–14 WL
[

PSD
(

SAWP𝑖
)]

1st,2nd Wavelengths of the 1st and 2nd
dominant peaks of the SAWP𝑖 PSD for
the 𝑖th sensor

15–18 |

|

|

PSD
(

SAWP𝑖
)

|

|

|1st,2nd
Magnitude of the 1st and 2nd
dominant peaks of the SAWP𝑖
PSD for the 𝑖th sensor

Table 4
Features included in the datasets for the ML model (𝑀_SA).

Index Feature Description Index Feature Description

1–2 𝑅𝑡stag.𝑠𝑡𝑟𝑖𝑝 𝑅𝑡stag at steady-arm position for both strips 3–6 SAWP𝑠𝑒𝑛𝑠𝑜𝑟,𝑠𝑡𝑟𝑖𝑝 SAWP at steady-arm position for both strips and sensors
7 𝑆𝑡amp OCL stagger amplitude 8 𝑆𝑡ct OCL stagger central position

As mentioned in the previous section, the datasets for regressors are generated in both Scenario 1 and Scenario 3. In Scenario 1,
or each of the speeds under study, 600 observations are generated with 36 features and two target variables. The target variables
f 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct , which are 𝑆𝑡amp and 𝑆𝑡ct , respectively, maintain a uniform distribution, with possible values on [0, 0.3] m

range for amplitude and [−0.07, 0.07] m for central position.

5.1.3. Datasets generation for the steady-arms diagnosis
In the datasets Sc2_CD𝑉 , each observation corresponds to an individual SA position. Therefore, previous to the feature definition,

it is necessary to determine SAs positions approximately. This pre-process exploits the fact that pronounced peaks and notches of
𝑅𝑡stag are related to SAs (Fig. 8(c)). In order to label a peak or notch as a SA position, it is imposed that their prominence and
width must be above 0.15 and 10m, respectively. This minimum prominence is expected to detect most of the of SAs imposing
stagger amplitudes above 0.05 m, which encompass those SAs at risk of causing dewirement. This claim is supported by results
corresponding to centred stagger in Fig. 11, which show that maximum and minimum values of 𝑅𝑡stag lower than 0.15 are due to
stagger amplitudes below 0.05 m. Regarding the width of the peak, it simply acts as a high-pass filter of wavelengths about 10 m.
With this threshold definition, about 7% of the SAs positions are missed. However, false SA positions are avoided. Moreover, this
procedure identifies about 99% of the SAs positions corresponding to faulty ones. As it might be expected, most of the missed SAs
occur for small values of 𝑆𝑡amp, whose mean value is 2 cm with a standard deviation of 1 cm. This pre-process explains why the
number of observations in Sc2_CD𝑉 ( Table 2) is below the number of SA positions overtaken in simulations.

Once SA positions are located, the features are defined from SAWP and 𝑅𝑡stag values at the corresponding locations. The
description is included in Table 4. The values of 𝑆𝑡amp and 𝑆𝑡ct defined by the scenario configuration are also introduced as features.
This fact involves that 𝑀_SA needs a previous knowledge of the OCL nominal geometry in order to perform the SA diagnosis. The
target variable is categorical, it has two possible outcomes: healthy and faulty diagnosis.

5.2. Machine learning model generation and performance for steady-arms diagnosis

H2O AutoML is used to train and cross-validate the ML models: 𝑀_𝑆𝑡amp, 𝑀_𝑆𝑡ct and the 𝑀_SA [40]. It is an open-source,
distributed, fast and scalable platform designed for the development of ML and predictive analytics. H2O AutoML works with the
following types of models: deep learning models, gradient boosting machines, generalized linear models and distributed random
forests. In addition, it makes use of the stacked ensemble technique to improve overall model accuracy [41].

For the analysis and training of the different models, a Docker container with R server has been deployed. The computer where
the container is deployed has the following characteristics: Intel® Core™ i7-8700 CPU @ 3.2 GHz with 32 GB RAM. The resources
allocated to Docker are 5 CPUs, 26.50 GB RAM and 1.5 GB of swap RAM.

5.2.1. Machine learning modelling for the estimation of stagger amplitude and central position
Following the guidelines defined at the beginning of this section, two batches of ML models are performed: 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct .

In both batches, three models are trained, each one with the dataset corresponding to the speed to be analysed for estimation of
𝑆𝑡amp: 𝑀_𝑆𝑡amp_100, 𝑀_𝑆𝑡amp_200 and 𝑀_𝑆𝑡amp_300; and for the estimation of 𝑆𝑡c: 𝑀_𝑆𝑡ct_100, 𝑀_𝑆𝑡ct_200 and 𝑀_𝑆𝑡ct_300.

A total of 150 different ML models are trained for 𝑆𝑡amp and 𝑆𝑡ct and 100 models for the estimation of SA. In order to reduce the
17

risk of overfitting, all training is performed with 10 folds in a cross-validation fashion. The dataset is divided into ten equal parts
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Fig. 20. (a): 𝑀_𝑆𝑡amp model RMSE (b): 𝑀_𝑆𝑡ct model RMSE. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

in order to train with nine of them and validate with the tenth. Ten iterations are performed, changing the validation set. Through
this methodology, the risk of overfitting can be reduced and a more reliable performance can be obtained.

The metric used for the valuation of the trained models 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct is the root-mean-square error (RMSE). This metric
measures the amount of error between the observed values

(

𝑣𝑖
)

and those predicted by the model
(

�̂�𝑖
)

. The RMSE is defined as

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑣𝑖 − �̂�𝑖)2, (22)

where 𝑛 is the number of observations.
Fig. 20 shows the performance of the models 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct . The 𝑦-axis shows each speed under study. The 𝑥-axis shows

the RMSE of the trained models: The blue colour shows the cross-validated results in Scenario 1, and the yellow colour shows the
performance results of the models in Scenario 3, which includes one disturbed SA. The 95% confidence intervals (CI95) show the
performance uncertainty. The confidence intervals have been calculated using percentiles: the minimum corresponds to a percentile
2.5 and the maximum is the percentile 97.5.

The trained models show good performance for the estimation of 𝑆𝑡amp and 𝑆𝑡ct . The 𝑀_𝑆𝑡amp_100 model obtains a RMSE of
4.5mm CI95 [3.7mm, 5.5mm], the 𝑀_𝑆𝑡amp_200 model obtains a RMSE of 4.9mm CI95 [4.3mm, 5.3mm] and the 𝑀_𝑆𝑡amp_300 model
has a RMSE of 4.6mm CI95 [3.9mm, 5.2mm]. The 𝑀_𝑆𝑡ct_100 model obtains an RMSE of 4.0mm CI95 [3.1mm, 5.3mm], the 𝑀_𝑆𝑡ct_200
model obtains a RMSE of 4.1mm CI95 [3.3mm, 4.8mm] and 𝑀_𝑆𝑡ct_300 has an RMSE of 4.5mm CI95 [3.7mm, 5.3mm].

On the other hand, the models trained in Scenario 1 have been evaluated for Scenario 3. The performance is shown in
ellow colour. The RMSE value for 𝑆𝑡amp and 𝑆𝑡ct lies around 7.2mm CI95 [0.21mm, 15.8mm] and 5.6mm CI95 [0.32mm, 12.5mm],
espectively.

The confidence intervals for Scenario 1 and Scenario 3 overlap, which discards the risk of overfitting. The results show differences
etween those obtained for Scenario 1 and Scenario 3. These differences are reasonable because the ML models are trained with
cenario 1, whereas datasets from Scenario 3 are unknown by them. Therefore, the prediction in the case of Scenario 3 results in
arger RMSE and wider confidence interval than in Scenario 1. Nevertheless, these errors levels are considered still acceptable.

Overall, the results indicate that the proposed methodology can be used for monitoring the health status of the stagger amplitude
nd its RMSE is independent of the speed.

.2.2. Machine learning modelling for diagnosis of steady-arms
Three classification models are trained, one for each speed studied. The method followed for the training of these models is

dentical to that followed for the training of 𝑀_𝑆𝑡amp and 𝑀_𝑆𝑡ct models. The H2O AutoML library is used again. For each of the
hree speeds, 100 models are trained, keeping the 10 fold cross-validation to prevent overfitting.

As mentioned in the scenario configuration, only 11% of cases are faulty SA in Scenario 2 and 4% in Scenario 3. This is a case of
n imbalanced classification problem. For this reason, the AUC-PR Curve (Area Under the Precision–Recall Curve) metric is taken
nto account [42]. Both precision and recall are focused on predicting the minority class (the faulty cases). Their definitions read

Precision = TP
TP + FP , (23)

Recall = TP
TP + FN , (24)
18
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Fig. 21. 𝑀_SA PR-curve on Scenario 2 and Scenario 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

where TP is a count of true positive of faulty cases, FP is a count of false positive of faulty cases and FN is a count of false negative
of faulty cases. Precision is a metric that quantifies the number of correct positive predictions made. The result is a value between
0 and 1, where 0 refers to no precision and 1 to full or perfect precision. Recall is a metric that quantifies the number of correct
positive predictions made out of all positive predictions that could have been made. Like Precision, the result is a value between 0
and 1. The baseline value is calculated for comparison purposes. Baseline is defined as

Baseline =
𝑁Positive

𝑁Observations
, (25)

where 𝑁Positive and 𝑁Observations are the number of positive cases and the number of observations, respectively. If all predictions were
faulty for the SA diagnosis, it would be the case of having 0 false negatives. Consequently, the precision would be equal to the
baseline, since TP + FP would equal the number of observations.

Fig. 21 shows the PR curve results of the 𝑀_SA (blue line) in Scenario 2 and 𝑀_SA (yellow line) in Scenario 3. The dotted line
refers to the baseline value. The PR curve is plotted with Precision on the 𝑦-axis and Recall on the 𝑥-axis.

During diagnosis, the model 𝑀_SA assigns a certain probability to each observation. If the probability is higher than a chosen
threshold, the observation is flagged as a faulty diagnostic, if it is less, the classification is healthy. All possible values of Precision
and Recall depend on the chosen probability threshold. The values of this threshold range from 0 to 1:

• If the threshold is set to 0 (Th0):

– All observations are flagged as a positive class (faulty condition).
– It would be the case to have 0 FN, so Recall takes the value of 1.
– TP + FP would be equal to the number of observations, so Precision takes the value of the baseline.
– This configuration is represented in the graph by the point of intersection between the dotted line and the continuous

curve (Precision𝑇ℎ0, Recall𝑇ℎ0) = (Baseline, 1) (See Fig. 21(a)).

• If the threshold is set to 1 (Th1):

– All observations are flagged as the negative class (healthy condition).
– TP is 0. Thus, Recall takes the value of 0
– TP and FP take the same minimum, so Precision takes the value of 1.
– This configuration is represented on the graph by the leftmost point of the curve (Precision𝑇ℎ1, Recall𝑇ℎ1) = (1, 0) (See

Fig. 21(a)).

• In each of the models, the curve is given by shifting the probability threshold from 0 to 1. The curve has as many midpoints
as dataset observations.

The decision as to which threshold to choose is in the hands of the user-defined strategies. Usually, for the selection of this
threshold, F-measure (F-score) is used. The threshold is defined to make maximum the value of F-measure. There are several ways
to obtain this value. One of them is 𝐹1, which is defined as

𝐹1 =
𝑇𝑃

1
. (26)
19
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Table 5
𝑀_SA AUC-PR on Scenario 2 and Scenario 3.

Model 100 km∕h 200 km∕h 300 km∕h

Baseline AUC-PR CI95 Baseline AUC-PR CI95 Baseline AUC-PR CI95

𝑀_SA Sc2 0.11 0.970 [0.961, 0.978] 0.12 0.952 [0.942, 0.962] 0.11 0.934 [0.919, 0.947]
𝑀_SA Sc3 0.04 0.918 [0.875, 0.952] 0.04 0.960 [0.935, 0.979] 0.03 0.872 [0.813, 0.922]

Fig. 22. Confusion matrices of the resulting diagnosis performed by 𝑀_SA over Scenario 3. The probability threshold is set according to 𝐹1-score and 𝐹2-score.

In this case, the measure gives equal weight to false negatives and false positives. Considering that the applicability of the
proposed strategy is for the diagnosis of SA, it may affect more the occurrence of false negative cases (A faulty case that the 𝑀_SA
diagnoses as healthy). Therefore, other metrics have been evaluated for the definition of the threshold. For example, the 𝐹2 measure
that gives more weight to recall than to precision and is defined as

𝐹2 =
5𝑇𝑃

5𝑇𝑃 + 4𝐹𝑃 + 𝐹𝑁
. (27)

Fig. 21(a) shows the points on the PR curve related to those thresholds that make maximum 𝐹1 and 𝐹2, whose values are 0.59
and 0.10, respectively.

Table 5 shows the AUC-PR results of the three trained 𝑀_SA models on Scenario 2 compared to results of the models on Scenario
3. All models show very good performance in terms of AUC-PR. The possible range of values for the AUC-PR is between baseline and
1, where baseline is the worst value and 1 is the best. In both scenarios, the value is closer to 1. The results are worse in Scenario 3
because the models have been trained for Scenario 1. This is also the reason for the increase in confidence intervals. No relationship
is observed between train velocity and models’ performance. The results show a significant difference between the PR curve with its
respective baseline for each of the speeds analysed. The performance decreases in Scenario 3 because the models have been trained
for Scenario 1.

The diagnoses performed by 𝑀_SA are shown in Fig. 22 by using confusion matrices. These results are obtained using the
probability thresholds that make maximize 𝐹1 and 𝐹2. These matrices represent the TP and TN in the diagonal boxes, whereas FN
and FP are introduced in the bottom-left and upper-right boxes, respectively. Below each confusion matrix, a table shows relative
values, where the first and second rows represent the percentages of true and false diagnoses, respectively, for faulty and healthy
SAs. It is observed that 𝑀_SA using the 𝐹1 threshold can detect between 80 and 90% of the faulty SA positions, whereas more than
99% of the healthy SAs are correctly classified. To avoid missing faulty SAs, that is reducing FN, the threshold obtained accordingly
to 𝐹2 might be used. In this case, about 96% of the faulty SAs are detected at 100 and 200 km/h, whereas 88.5% are detected at
300 km/h. This improved detection of faulty SA is achieved at the cost of increasing the number of healthy SA positions diagnosed
as faulty (FP).

6. Discussion

At present, the measurement of the OCL stagger with instrumented vehicles is based on force sensors and vision systems. Until
20

now, inertial measurements had not been considered to perform this task. This barrier arises from the low value of the stagger
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frequency, below 1 Hz. However, the theoretical work developed here shows the potential of contact strips accelerations to monitor
the OCL stagger.

The methodology presented here proposes a new monitoring capacity of inertial measurements obtained in pantograph panhead.
Therefore, it fosters the use of cheaper and less invasive monitoring strategies for the railway infrastructure. The methodology is
based on a clear connection between the OCL stagger and the vertical panhead accelerations that this work establishes.

The analysis of the simulated pantograph signals revealed that the contact strips motion within a particular frequency range and
at side positions has periodic patterns dominated by the stagger frequency. The proposed time–frequency signal processing based
on the CWT and SAWP exploits this behaviour. The resulting output is 𝑅𝑡stag, a time-domain non-dimensional value with a highly
linear relation with the stagger.

To assess the method reliability, this work studies the sensitivity of 𝑅𝑡stag to diverse sources of randomness. This analysis confirms
that 𝑅𝑡stag is robust to geometric uncertainties of the OCL, vehicle speed and stiffness of the attachment elements. However, the
contact strip mass has a significant impact on 𝑅𝑡stag, changing the sensitivity of 𝑅𝑡stag to the stagger amplitude as the contact strip
mass varies. Besides that, there are no significant differences between 𝑅𝑡stag predicted on the leading and trailing contact strips,
which might ease the implementation since only one instrumented contact strip could monitor stagger in both travel directions.

The use of a virtual environment has allowed the training of model-driven ML models to identify undesired and uncommon
situations such as the ones addressed here, the faulty steady-arms. This is a key point of the proposed methodology as compared
with analogous data-driven ML models, in which the lack of labelled data associated with extreme circumstances would hinder
its formulation. Nevertheless, the final assessment of the methodology must be addressed with real measurements. It is also worth
highlighting the contribution in the railway sector made by demonstrating the advantages of tools such as AutoML in their usefulness
to visualize the estimation possibilities more accurately and efficiently.

In this work, the features employed for the training of the ML models are those most common in the analysis of both time and
frequency domain signals. Nevertheless, a sensitivity analysis of ML models to these features would increase the understanding of
the methodology. Subsequently, it may lead to consider some features not relevant for the ML models and to enhance them by using
specific new features.

Before considering a fully operational implementation of the methodology two main issues should be addressed. Firstly, the
reduction during the service life of the contact strip mass due to wear. Despite this could involve some challenges for a monitoring
strategy based on this methodology, it opens the door to monitor together both stagger and contact strip wear. Secondly, the
monitoring under varying speed conditions. On the one hand, it does not involve significant changes from the point of view of the
signal analysis, as long as signals are transformed from the time to the spatial domain once wavelet transformation is performed.
Nevertheless, this task would require a positioning system. On the other hand, varying speed conditions may affect the value of
the features inputted to the ML models. If the speed variation is smooth enough, the current method might be still valid since
the influence of speed on 𝑅𝑡stag is not dominant. Furthermore, the ML models are trained with simulations performed at different
constant speeds randomly chosen within a certain range. Moreover, geometrical randomness tends to fade even more the influence
of the speed. Nevertheless, the applicability of ML models trained under constant speed condition to varying speed situations is a
subject of further detailed study. Another alternative is creating datasets under non-constant speed conditions, but it would increase
significantly the number of feasible scenarios to be simulated.

7. Conclusions

The presented methodology shows the potential of predicting the lateral OCL geometry and detecting faulty steady-arms by using
inertial measurements of the panhead. The main conclusions of this work are following stated:

(a) The dynamic response of the pantograph contact strips is significantly affected by the change of the lateral contact position
due to the stagger.

(b) The influence of the stagger is highly noticeable in the contact strip accelerations at side positions. The frequency range of
interest is limited by the first rigid and flexible vibration modes of the contact strips, about 5 Hz and 50 Hz for the pantograph
model used here.

(c) Non-centred loads on the pantograph due to the stagger cause alternate constructive and destructive interference on contact
strip motion at side positions. The methodology relies on this phenomenon to monitor the stagger.

(d) Via time–frequency analysis of the signals, more specifically the Scaled Average Wavelet Power, meaningful features to
monitor the lateral OCL geometry are obtained. The proposed signal analysis is robust to geometrical uncertainties, and
it is valid in a wide range of vehicle speeds. However, it is highly affected by the mass change of the contact strips.

(e) The ML models show a good performance for low, medium and high speeds. Regarding geometry estimation, the stagger
amplitude and the stagger central positions are predicted with an RMSE of approximately (4.7 ± 1.0) mm and 4.2mm on
average, respectively. Concerning the diagnosis of steady-arms, the ML models have an average predictive capability of 95
AUC-PR to assess whether a steady-arm is healthy or faulty.

(f) The performance of both ML model types is further observed by using them over a common dataset with a different
configuration to that of the training datasets. In this case, the estimation of amplitude and central position have RMSE of 7mm
and 5.6mm, respectively; whereas the ability to perform a correct classification is around 0.90 AUC-PR. The latter translates
into detection rates of the faulty steady-arms about 96% at 100 and 200 km/h, and around 88% at 300 km/h.
21
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Table 6
Static validation of the simple AC OCL model (EN-50318-2018 [15]). Dropper length error must be below 10 mm. Elasticity error
must be below ±0.1 mm/N.

Dropper no. Dropper length Elasticity

Standard Model Error Standard Model Error
[mm] [mm] [mm] [mm/N] [mm/N] [mm/N]

Sup. – – – 0.206 0.196 −0.010
1 1023 1027 4 0.165 0.166 0.001
2 902 908 6 0.273 0.266 −0.007
3 815 822 7 0.345 0.338 −0.007
4 764 771 7 0.388 0.381 0.007
5 747 754 7 0.400 0.396 0.004

Table 7
Dynamic validation of the simple AC-OCL model (obtained values and acceptance ranges).

Speed [km/h] 275 320

Pantograph Leading Trailing Leading Trailing

Result Range Result Range Result Range Result Range

Mean force [N] 144 [141.5, 146.5] 143 [141.5, 146.5] 167 [166.5, 171.5] 168 [166.5, 171.5]
𝜎 [N] 32.7 [31.9, 34.8] 54.1 [50.0, 54.5] 52.1 [49.5, 62.9] 36.3 [30.2, 43.8]
𝜎0–5 Hz [N] 26.5 [26.4, 28.9] 45.1 [41.2, 45.4] 41.5 [38.7, 44.4] 17.6 [14.3, 23.3]
𝜎5–20 Hz [N] 19.0 [16.2, 22.4] 30.8 [25.2, 34.7] 31.5 [29.0, 46.2] 34.4 [26.7, 38.2]
Max. force [N] 237 [219, 244] 277 [241, 290] 301 [295, 343] 269 [252, 317]
Min. force [N] 86 [71, 86] 23 [14, 50] 66 [55, 82] 47 [21, 86]
Vert. position range [mm] 45 [19, 49] 61 [53, 70] 50 [39, 51] 24 [18, 35]
Max. uplift [mm] 43 [39, 48] 46 [45, 54] 60 [57, 64] 55 [50, 61]
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ppendix A. Terms for the dynamic OCL-pantograph interaction.

According to the Newmark’s method, the variables in Eq. (14) are defined as

𝐊Int =
1

𝛽𝛥𝑡2
𝐌sys +

𝛾
𝛽𝛥𝑡

𝐂sys +𝐊sys, (A.1)

̂̇𝐪 ≡ −
[

𝛾
𝛽𝛥𝑡

𝐪sys.𝑘 +
(

𝛾
𝛽
− 1

)

�̇�sys.𝑘 +
(

𝛾
2𝛽

− 1
)

𝛥𝑡�̂�sys.𝑘
]

, (A.2)

̂̈𝐪 ≡ −
[

𝛾
𝛽𝛥𝑡2

𝐪sys.𝑘 +
1
𝛽𝛥𝑡

�̇�sys.𝑘 +
(

1
2𝛽

− 1
)

�̂�sys.𝑘
]

, (A.3)

where 𝛾 and 𝛽 are parameters of the integrator set in 0.5 and 0.25, respectively, which results in the average acceleration method.
The instantaneous response vectors in Eq. (15) read

𝐮∗𝑐c =
∑

𝑖∈DoF𝑐c

𝐊−1
int𝐁c.𝑖𝑁c.𝑖

(

𝑥𝑐
)

, (A.4)

𝐮∗𝑐p =
∑

𝑖∈DoF𝑐p

𝐊−1
int𝐁p.𝑖𝑁p.𝑖

(

𝑦𝑐
)

, (A.5)

𝐮∗𝑑c = 𝐊−1
int𝐁c.𝑑 , (A.6)

here DoF𝑐c and DoF𝑐p refer to the OCL and pantograph DoF involved in the 𝑐th contact position, respectively. The terms 𝐁c.𝑖 and
are both Boolean vectors, the former has unitary values at the 𝑖th DoF, and the latter has non-zero values for the DoF at both
22

c.𝑑
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ends of the slackened droppers, 1 and −1 for the contact and messenger wires. The terms 𝑁c.𝑖(𝑥𝑐 ) and 𝑁p.𝑖
(

𝑦𝑐
)

represent the value
of the OCL and pantograph shape functions, respectively, associated to the 𝑖th DoF at the longitudinal and lateral coordinates of
the 𝑐th contact position, 𝑥𝑐 and 𝑦𝑐 , respectively.

The terms of the vector and matrices in Eq. (17) are defined as

𝐴𝑐𝑖 ,𝑐𝑗 = −𝑘cont𝐍𝑐𝑖

(

𝐮∗𝑐𝑗c

𝐮∗𝑐𝑗p

)

, 𝐵𝑐𝑖 ,𝑑𝑗 = −𝑘cont𝐍𝑐𝑖

(

𝐮∗𝑑𝑗c

𝟎

)

, (A.7)

𝐶𝑑𝑖 ,𝑐𝑗 = −𝐤d.𝑑𝑖𝐧d.𝑑𝑖

(

𝐮∗𝑐𝑗c

𝐮∗𝑐𝑗p

)

, 𝐷𝑑𝑖 ,𝑑𝑗 = −𝐤d.𝑑𝑖𝐧d.𝑑𝑖

(

𝐮∗𝑑𝑗c

𝟎

)

, (A.8)

𝐸𝑐𝑖 = 𝑘cont
(

𝐍𝑐𝑖𝐪
𝑡
sys.kn −𝑤irr.𝑐𝑖

)

, 𝐹𝑑𝑖 = 𝐤d.𝑑𝑖𝐧d.𝑑𝑖𝐪
𝑡
sys.kn, (A.9)

where vector 𝐍𝑐𝑖 is the contribution of shape functions to the interpenetration at the 𝑐𝑖th contact position, 𝐤d.𝑖 is the stiffness matrix
of the slackened dropper, 𝐧d.𝑖 is a boolean vector to select the coordinates at both ends of the 𝑖th dropper and 𝐈𝑛 is a 𝑛 × 𝑛 identity
matrix.

Appendix B. OCL-pantograph interaction model validation results

See Tables 6 and 7.
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