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Abstract: Security is the main challenge of the Modbus IIoT protocol. The systems designed to
provide security involve solutions that manage identity based on a centralized approach by intro-
ducing a single point of failure and with an ad hoc model for an organization, which handicaps
the solution scalability. Our manuscript proposes a solution based on self-sovereign identity over
hyperledger fabric blockchain, promoting a decentralized identity from which both authentication
and authorization are performed on-chain. The implementation of the system promotes not only
Modbus security, but also aims to ensure the simplicity, compatibility and interoperability claimed
by Modbus.
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1. Introduction

Modbus became one of the most widely used protocols in Industrial Internet of Things
(IIoT) environments and nowadays it is implemented by hundreds of different vendors
and thousands of devices [1]. Modbus enables the data exchange between different parts
of the industrial process, not only Programable Logic Controller (PLCs) and field devices
but also PLCs and Supervisory Control and Data Acquisition (SCADAs). The three main
features that enable Modbus success are simplicity, compatibility and interoperability.
However, security is its main deficiency. In this regard, vulnerabilities have been detected
both in design and configuration as well as in implementation, which are exploited using
different attack patterns [1]. Hence, several solutions add security layers while trying to
keep it simple, compatible, and interoperable. Some of these solutions belong to identity
and access management domains. For instance, this approach provides Modbus with
trusted identity and mutual authentication based on X.509 certificates, as well as secure
authorization based on a Role-based Access Control (RBAC) [2]. These types of common
solutions, based on centralized systems, are optimal in single-organization environments,
being the scalability their main drawback (i.e., solution feasibility is affected when multiple
organizations are involved). In this sense, the authors of [3] justify scalability problems
in terms of PKI infrastructure costs in Smart Grid environments, while the authors of [4]
justify it based on scenarios such as certificate revocation. However, a concern with central
authorities controlling identities is that if they are compromised in some way, those iden-
tities can be used in malicious ways: e.g., a hack of Dutch Certificate Authority allowed
supposedly secure encrypted data going across the internet to be intercepted and accessed
by hackers [5]. The decentralization promoted by blockchain emerges as a solution to
both scalability and centralized identity challenges, since it introduces an environment
with multiple organizations, while enabling the devices’ self-custody of identifiers and
credentials. In that sense, different works introduce innovative solutions for identity and
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access control management based on blockchain for IoT environments [6,7]. However,
none of them natively support the use of Self-Sovereign Identity (SSI) for decentralized
authentication and authorization and less for an IIoT environment represented by Modbus.
The manuscript’s contribution is the design and implementation of a Modbus Application
Protocol Secured based on Self-Sovereign Identity (mbapSSI) over Hyperledger Fabric
Blockchain (HFB) that ensures not only on-chain authentication and authorization but
also the other phases of an access control system: identification, auditing, and account-
ability, constituting an identity and access management system. To verify the feasibility of
mbapSSI, performance and scalability analyses are carried out in constrained Modbus-IIoT
environments. The rest of this manuscript is structured as follows: Section 2 introduces
the context related to blockchain-SSI as an identity and access management system, exam-
ining then, the application of SSI in the context IoT and IIoT as part of the related work.
Section 3 provides a background including Modbus protocol, SSI, and HFB, i.e., mbapSSI
enabling technologies. The design and implementation of our system are described in
Section 4. Section 5 describes the testbed and conducted experiments to determine the
feasibility of the proposal. Section 6 discusses the results of conducted experiments. Finally,
the conclusions of the manuscript are included in Section 7.

2. Related Work

Enabling the aforementioned features for mbapSSI implies going beyond an access
control system or an identity management system. For this reason, this section discusses
the integration of both concepts. Based on the Identity and Access Management (IAM)
Framework [8], the scientific community, governments and enterprises establish blockchain
as an enabling technology for both Identity Management (IM) and Access Management
(AM). In the identity management domain, Blockchain Identity Management Systems
(BIMS) are considered as an emerging technology, which differs of Traditional Identity
Management System (TIMS) since blockchain enables the custody of identity information,
while TIMS stores credentials (e.g., password) about users and devices which they inter-
act [9]. Currently, governments and organizations are working hard to create guidance on
BIMS. Thus, some countries, such as Estonia, are experimenting with BIMS for electronic
medical records [10]. In the access management domain, blockchain technology has been
included as part of several scenarios that involve all phases of access control systems:
identification, authentication, authorization, auditing and accountability [11]. At this point,
the SSI paradigm, does not need blockchain to be implemented. Nevertheless, blockchain
offers benefits that can be exploited by an integrated SSI-blockchain solution: blockchain
can be used as a distributed ledger to establish immutable records of lifecycle events for
globally unique decentralized identifiers (DIDs). In addition, SSI-blockchain integration
can be the enabler for identity and access management. Although the authors of [12]
classify SSI only as an emerging identity management system, the fact that SSI ensures
not only authentication, but also authorization [13], implies that it is also involved in the
context of access management. Once having discussed that SSI is suitable for IAM, we will
focus on the related work in the application of SSI in the context of IoT and IIoT due to the
recent integration of both concepts.

Thus, the following manuscript [14] contrasts existing identity approaches, such
as digital certificates, with open standards for SSI: decentralized identifiers (DIDs) and
verifiable credentials. The same work also analyzes the advantages and challenges of
both standards for ensuring authentication in IoT environments, although these are only
proposals that do not result in the design or implementation of a specific system but
are part of future research lines. Additionally, the work in [15] compares SSI-blockchain
solutions such as Sovrin, UPort and Jolocom, while promoting the integration of SSI in
IoT architectures, enabling comparisons with OpenID Connect. However, again, this work
is only a very useful proposal (not implementation) in terms of background and analysis
of possible use cases. Furthermore, the Sovrin approach indicates, from a non-technical
perspective, how SSI addresses main IoT challenges such as identification, authentication,
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authorization and auditing, while ensuring data privacy and data integrity over a secure
channel [16]. However, this manuscript also focuses on proposals rather than specific
designs or implementations of SSI. Finally, the authors of [17] present a novel solution for
IoT device IM based on SSI and backed by the security offered by the IoTA Tangle DLT.
Although the authors even present a practical use case focused on car rental industry, there
are no technical details neither performance analysis of the implementation of the solution.
Despite the progress described above, numerous challenges face SSI in both the IoT and
IIoT contexts, including authentication and authorization in machine-to-machine (M2M)
environments [13]. Therefore, mbapSSI aims to address these challenges, not only from a
theoretical design in a representative IIoT use case, but also from the implementation and
feasibility analysis point of view, trying to solve the mentioned gaps. Thus, mbapSSI does
not only guarantee the decentralized identity management that blockchain promotes, but
also includes the design and implementation of authentication and authorization on-chain.
The mbapSSI approach consists of authorizing the use of a resource and giving access to
a Modbus service, putting in value the role of blockchain technology for SSI, as a trust
mechanism that allows controlling access to data, allowing the Modbus device to decide
with whom, when and how it shares information.

3. Background

The three main concepts of mbapSSI are discussed in this section: Modbus protocol,
SSI and Hyperledger Fabric Blockchain.

3.1. Modbus Protocol

Modbus is an Industrial Internet of Things (IIoT) protocol with applications in scenar-
ios such as building automation or energy management systems [1]. Modbus is useful for
the management and control of industrial devices such as Programable Logic Controller
(PLCs), Supervisory Control and Data Acquisition (SCADAs), sensors and actuators. The
three most common versions of the protocol are Modbus ASCII, Modbus RTU and Modbus
TCP/IP, where the first two use serial line interfaces and are associated with deterministic
transmissions. Modbus TCP/IP arises with the objective of solving requirements such as
the limit to 240 devices per network, however, the non-deterministic nature of TCP/IP
means that it is common to see this version of Modbus in interactions between supervisory
level and field level devices (e.g., SCADAs and PLCs) rather than interactions between
field devices with each other such as a PLC and a sensor. From performance perspective,
Modbus-IIoT environments can be considered as constrained scenarios, which can result in
latencies of up to 100 ms according to [18]. It is well known that the major shortcomings
of Modbus are in the area of security, for this reason references such as [19] present an
extensive taxonomy of attacks for both Modbus serial and Modbus TCP. Considering that
standard Modbus protocol cannot be secured, e.g., providing authentication to the Modbus
frame, whatever security layer provided, it must not limit the simplicity, compatibility and
interoperability of the Modbus protocol.

3.2. Self-Sovereign Identity (SSI)

SSI follows the basic premise that people should control their own identity with
regard to relationships and interactions with other people, organizations, and things [20].
However, the evolution of the concept of SSI extends the control of their identity to the
context of things and machines, as mentioned in Section 2. The principles guiding SSI have
been presented in the past by Christopher Allen [21], however, approaches that extend
these principles have been analyzed by the authors of [12], including concepts such as
(1) sovereignty, (2) data access control, (3) data storage control, (4) security, (5) privacy,
(6) flexibility, (7) accessibility and (8) availability.

The SSI ecosystem assumes three key roles (issuer, holder, and verifier) in addition
to a verifiable data and status registry (VDSR). An issuer creates and issues credentials to
a holder. A holder receives credentials from an issuer, holds them and when required, it
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shares these credentials with a verifier. A verifier receives and verifies credentials presented
by a holder. A VDSR is a trusted mediator to manage and verify relevant information, e.g.,
identifiers. The verifiable credentials’ specification defines examples of VDSR such as a
trusted database, decentralized databases, and distributed ledgers [22].

SSI integrates some standards such as Verifiable Credential (VC) [22] and Decentral-
ized IDentifier (DID) [23], which are proposed to create a cryptographically verifiable
digital identity that is fully controlled by its owner [24]. A VC is an attestation of qual-
ification issued by a third party (e.g., issuer) with de facto authority to an entity (e.g.,
holder) [24]. In this regard, VCs are JSON documents constructed and digitally signed
by an authority (e.g., issuer) which includes possible correlating values such as a holder
identifier, the signature value and the claim value. The DID is a permanent, universally
unique identifier and cannot be taken away from its owner who owns the associated
private key, which is completely different from other identifiers such as an IP address and
domain name [24]. Two other important concepts associated with DID should be analyzed:
DID Method and DID Document. DID Methods define the types or classes of DIDs and
represents the second part of the DID format. Several types of DID Methods are set out
in [25], including Ledger-based DIDs, Ledger Middleware, Peer DIDs, Static DIDs and
Alternative DIDs. Since Ledger-based DIDs are the most commonly used, some examples
are shown next: btcr (Bitcoin), ethr (Ethereum), and sov (Sovrin). DID Document is a data
structure that contains basic information that is needed to connect with a subject (e.g., a
verifier). The DID Document is resolved through a DID and consumed by digital identity
applications (e.g., wallet), so that each DID has exactly one DID Document associated with
it [25].

3.3. Hyperledger Fabric Blockchain

HFB is a private and permissioned distributed ledger and smart contract framework
maintained by Linux Foundation [26]. Considering that HFB is pivotal to our proposal, we
will justify its selection as a VDSR of our SSI proposal from three perspectives. First, the
use of HFB as part of the IAM context, highlighting its suitability in SSI scenarios. Second,
the justification of using HFB over other SSI implementations. Thirdly, from a performance
perspective given our focus related to IIoT environments.

In the identity management domain, HFB is involved in several use cases. For instance,
the work in [27] uses HFB as a Certification Control System to enforce Certificate Signing
Request (CSR) validation. In addition, HFB is also used to provide transparency for better
Certificate Authority (CA) accountability [28]. In the access management domain, there are
also several use cases, including HFB as part of SSI systems. Thus, several approaches use
Access Control Systems based on HFB to ensure phases such as identification, authentica-
tion, authorization and accountability in IIoT environments [15,29,30]. Moreover, in the
context of SSI, although the scientific literature offers few examples involving HFB in SSI
systems, some steps have been taken towards this direction. Thus, the contribution in [31]
designs and implements both an SSI and an access management system for smart vehicles,
using HFB as a key piece.

References such as [15] analyze SSI solutions including Sovrin, Civic, UPort, Jolocom,
Veres One, etc. These solutions mostly implement two types of blockchain technologies:
Ethereum and Hyperledger Indy, which will be the objects of our comparison with HFB.
Although solutions such as uPort (Ethereum) seem promising [32], on-chain environments
are limited from both solidity capabilities and order–execute architecture. In contrast,
HFB through the execute–order–validate model eliminates non-determinism and enables
standard programming languages such as Golang, which amplifies the on-chain capability
of the solution. Additionally, Hyperledger Indy is a purpose-built ledger for Identity,
which can be considered a public-permissioned blockchain [33]. However, since Indy does
not have the ability to run smart contracts, authentication and authorization are based on
information stored in the ledger using static and predefined rules. From the perspective of
mbapSSI, the on-chain dynamism provided by a chaincode, allowing complex computa-
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tional operations such as on-chain signature verification, exceeds the performance of Indy,
a scenario that implies the need to strengthen the off-chain implementation.

From a performance perspective, according to [34], blockchain addresses challenges
defined as key for IIoT environments such as system scalability and interoperability, secu-
rity and data quality. Particularly, it has been demonstrated the feasibility of an HFB-based
access control system in a performance-constrained IIoT environment such as an engine
assembly line [35].

4. Design and Implementation

This section establishes the design and implementation criteria defined for mbapSSI.
For a better understanding of these criteria, we contextualize the background provided for
SSI in terms of key concepts for mbapSSI.

4.1. Key Concepts for mbapSSI
4.1.1. Modbus End-Devices Analysis for mbapSSI

Section 3.1 mentioned the low latency requirements for a Modbus-IIoT environment.
Considering the network architecture recommended by NIST [36], mbapSSI puts the focus
on the interaction between field control devices with local human–machine interface (HMI),
i.e., TCP/IP connections. In this way, a Modbus client could be visualized as a Scada, while
the Modbus server as a PLC. In addition to network communication, Modbus devices store
a key pair associated with the DID as part of a wallet.

4.1.2. DID Approach for mbapSSI

Expression (1) shows the Ledger-based DID contextualization for mbapSSI on a three-
element identifier separated by a colon: scheme identifier “did”, DID Method identifier
and DID method-specific identifier. The approach adopted in mbapSSI for three-parameter
definition is based on [25], following the DID syntax based on Augmented Backus-Naur
Form (ABNF) Syntax Specification [37] as DID Standard defines [23]. In this regard, the
DID Method indicates the ledger used as VDSR, defining as DID work with a specific
blockchain. The specific identifier of the DID Method satisfies the property of being
unique in the namespace of the DID Method, since it is the SHA-256 hash function of the
public key registered in the VDSR, being the entity identified by the DID, the holder of
the private key. Additionally, with regard to the DID infrastructure, mbapSSI promotes
a key-value database, where key is the DID and value is the DID Document. Thus, we
can confirm that the DID adopted by mbapSSI complies with the properties of being
permanent, resolvable, cryptographically verifiable and decentralized [38], being therefore
a very close approximation to the DID standard by satisfying some of the core properties
of the standard.

did:hfb:1fb352353ff51248c5104b407f9c04c3666627cf5a167d693c9fc84b75964e2 (1)

Considering that mbapSSI aims to improve the shortcomings of the PKI infrastructure
presented for Modbus in terms of scalability, the first objective of the DID will be to
integrate it into X509 certificates, to replace the functionality of the Certification Authority
(CA) associated with a PKI infrastructure, as a base for the security of Modbus devices in
centralized environments according to the Modbus security specifications [39]. The purpose
behind not discarding the use of X509 certificates is that it is a mandatory requirement for
securing the channel using TLS. In this way, the DID of the Modbus device is recorded as
the Subject Alternative Name (SAN) extension within the X.509 certificate [40], allowing
the VDSR to become the authority for verifying identity rather than a CA when establishing
a secure channel. In this way, when Modbus devices exchange certificates as part of TLS,
they will be able to verify the DID through the VDSR. The second objective of DID is to
return the associated DID Document when the VDSR is properly queried, thus fulfilling
the resolvable property.
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4.1.3. DID Document Approach for mbapSSI

Our mbapSSI uses the “resolvable” property of DID to record, in the VDSR, the
key-value type for the DID-DID Document relation. Thus, our DID Document contains
a context, the authentication mechanism supported, the Modbus service definition, and
the digital signature of the entity that creates it. The Modbus service definition is fully
compliant with Modbus specifications [41], so it includes the service endpoint, the function
code, the starting address and the offset. As expression (2) indicates, service endpoint is
constituted by the Modbus application protocol secured (mbaps) frame type, as well as IP
address and access port. Each of the Modbus services to be exposed must be defined in the
DID Document. The DID Document can be constantly updated by adding or removing
Modbus services.

“serviceEndpoint”: “mbaps://{}:{}”.format(ipaddress, port) (2)

4.1.4. SSI without VC Approach for mbapSSI

Although in Section 3.2, VCs were defined, their standard indicates that their use is not
mandatory [22]. Thus, mbapSSI does not follow the VC model but focuses on complying
with the SSI properties established by [12], particularly in data access control, data storage
control, security and privacy. In that sense, mbapSSI promotes a decentralized identity that
highlights the property of sovereignty in the fact that the Modbus server has the ability to
share its data (through a Modbus service) with the authorized Modbus client. In mbapSSI,
the Modbus client provisioning on the authorization whitelist is performed through the
intervention of a user. It is identified as next objective the design and implementation of an
SSI model based on M2M authentication proposed by OAuth in [42], but it is out of the
scope of this work.

The authorization whitelist includes as input an out-of-band (OOB) mechanism pro-
vided by mbapSSI to associate the client’s public key to a Modbus service included in the
DID Document. This authorization whitelist will be updated in the VDSR and constitutes
the single point of user intervention.

4.2. Overview of mbapSSI

In order to integrate the concepts defined in the Section 4.1, as well as to provide
an overview of mbapSSI, Table 1 relates the parts that compose an SSI system with the
mbapSSI system phases. In this regard, the registration phase provides the Modbus device
(holder) with a decentralized identity, ensuring that this identity is registered in the VDSR.
In this phase, the DID has been integrated into the X509 certificate. In the provisioning
phase, the Modbus server’s owner (user) matches the Modbus clients with the Modbus
services to be used, so that the authorization whitelist is updated. It should be noted that
the provisioning phase is unrelated to the others, so it can be repeated at any time. The
channel securing phase provides the Modbus devices (both being holders and verifiers as
it will be clarified later on), with on-chain authentication, as well as the establishment of a
secure TLS channel [43]. The verification phase authorizes the Modbus client (holder) to
use a resource, i.e., a Modbus service, through a proof of identity provided by the on-chain
query of the authorization whitelist, where the Modbus server (verifier) is involved. Finally,
Modbus transactions phase enables the exchange of Modbus frames through a secure
channel between Modbus client and server (both holders). The VDSR is involved in all
phases of mbapSSI except when Modbus devices transact with each other to ensure both
low levels of latency and high throughput.

According to [44], in an SSI context each entity can have multiple roles, e.g., holders
can also be verifiers. Extrapolating this concept to a Modbus context throughout the
mbapSSI phases, the devices supporting the Modbus protocol, i.e., the Modbus client and
the Modbus server, may behave as holders or verifiers depending on the phase requirement.
In this regard, we define a Modbus client acting as a holder as CH, Modbus client acting as
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a verifier as CV, Modbus server acting as a holder as SH and Modbus server acting as a
verifier as SV. Table 2 summarizes the behaviors per phase.

Table 1. Participation of SSI parties on mbapSSI’s phases.

Phase User Holder Verifier VDSR

Registration X X
Provisioning X X

Channel securing X X X
Verification X X

Modbus transaction X

Table 2. Modbus devices’ behaviors.

Phase Device

Registration CH, SH
Channel securing CH, SH, CV, SV

Verification CH
Modbus transaction CH, SH

Figure 1 shows an overview of the interaction between parties of the SSI context and
Modbus devices of the Modbus context. As Table 2 indicates, the parties involved in the
registration phase (CH and SH) register their identities in the VDSR (1). Next, Modbus
service(s) to be exposed are registered in the VDSR by SH (2). At this point and as part of the
provisioning phase, in the step (3), the server’s owner relates Modbus client information to
the Modbus service(s) exposed in step (2), and then SH updates the whitelist (4).
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The channel securing phase is composed of two steps. On the one hand, CH and SH
start to ensure the communication channel via TLS (5). On the other hand, Cv and Sv must
verify the identities through the VDSR (6). At this point, CH must provide access proof for
services through the VDSR (7), based on the information defined in steps (3–4). Finally,
Modbus devices (CH and SH) exchange Modbus transactions for authorized services (8).

The correlation between Modbus and SSI converges in mbapSSI, where the three initial
phases (Registration, Channel Securing and Verification), excluding the Provisioning phase,
constitute the necessary mechanism, based on SSI, to provide a secure communication
channel, based on TLS, between a client and a Modbus server. The fourth phase is thus
isolated to ensure the simplicity, compatibility, and interoperability of Modbus transactions.

4.3. Chaincode Design

The chaincode is the most important piece of mbapSSI. Its strength lies in the fact that
complex operations such as signature verification can be performed on-chain, something
practically impossible in public-permissionless blockchains such as Ethereum, due to the
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high transactions cost. Therefore, it is possible to assert that the role of HFB for mbapSSI
goes beyond a simple VDSR. From a design perspective, the main feature of the chaincode
is the presence of a proxy, which is an approach pioneered by UPort [45], although UPort
deploys a new smart contract proxy for each identity. In that sense, the design of the
proxy as part of our chaincode adopts the identity verification functionality as well as the
routing capability to other functionalities. However, the mbapSSI chaincode does not need
to generate a new Smart Contract for each identity but relies on on-chain mechanisms
such as signature verification to perform identity verification. Therefore, in our case the
identity is stored in the ledger and can be queried from the proxy itself. Figure 2 describes
the functionalities of mbapSSI’s chaincode: Get Identity, Set Identity, Update Whitelist, Get
Entity’s Identity, Set DID Document and Get DID Document. The default design criterium
is that any input to the chaincode from the different entities (CH, CV, SH, and SV) must
have a DID and payload structure as shown in expression (3). For payload processing by
the chaincode, it must meet two conditions: (1) the sender identity must be registered and
(2) the payload must be signed by the sender.

{
did: “did:hfb:1fb352353ff51248c5104b407f9c04c3666627cf5a167d693c9fc84b75964e2”,
payload: “eyJhbGdvcml0aG0iOiJQUzI1NiIsImFsZyI6IlBTMjU2In0.eyJmdW5jdGlvbiI6ImNyZWF0ZVNlbGZJZGVudG”

}

(3)
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To enable these conditions, a proxy structure has been designed that basically verifies
both identity and signature, and then deserializes the payload in order to obtain the service
to be executed. For this purpose, the proxy relies on other structures, such as the signature
verifier and the identity registry, which are involved in the other functionalities except
for the Set Identity where the payload of expression (3) only contains the public key of the
entity. In this regard, the Get Identity functionality is only executed within the chaincode
and is called several times in all functionalities, in order to retrieve the public key for an
entity with a registered identity. In addition, the Update Whitelist functionality stores the
set of relations of the public key with the Modbus service index in the DID Document. On
the other hand, the Get Entity’s Identity functionality returns to off-chain side the public key
associated to an identity. Additionally, the Set DID Document functionality allows to create
and later update the DID Document. Finally, the Get DID Document functionality allows to
retrieve the DID document, for which, a JSON Web Token (JWT) must be included to prove
not only the identity of the client, but also the validity of the authorization given to use the
service defined in the whitelist. Thus, the public key associated to the CH identity is used
to retrieve the Modbus service(s) index(es) from the whitelist, returning to off-chain side,
the DID Document associated to the CH-related services in provisioning phase.

4.4. Implementation

The mbapSSI system is composed of the aforementioned chaincode and a Software
Development Kit (SDK) to enable the integration and interaction with HFB network. Thus,
while the chaincode manages the interactions in the on-chain side, the mbapSSI-SDK
manages the interactions in the off-chain side. This SDK, written in python is imported
into Modbus devices, i.e., client and server, to expose all functionalities required to interact
with the HFB network, enabling these devices to become CH, CV, SH, and SV. However,
mbapSSI-SDK imports three key pieces of code for the different interactions throughout
the mbapSSI lifecycle. Firstly, mbapSSI-SDK makes use of the HFB SDK for python to
invoke (write operations) and query (read operations) transactions on HFB [46]. Secondly,
mbapSSI-SDK requires the use of the python SSL library, to build TLS/SSL wrapper for
socket objects [47]. Finally, to transact Modbus frames from clients and servers, mbapSSI-
SDK imports the pymodbus library [48], a full Modbus protocol coded in python. Since
python is not one of the official HFB languages, it makes it necessary to use the HFB
version to 1.4.x since the python HFB-SDK updates are delayed for languages such as
JavaScript. Thus, to run mbapSSI, both the client and server must include python 3.8 and
mbapSSI-SDK into docker images.

The Figure 3 shows a flowchart, which details interactions between entities (CH, CV,
SH, and SV), including the information exchanged with the VDSR, corresponding to the
phases of mbapSSI. Although the figure uses generic names for easy understanding of the
functionalities (e.g., Request Did Document), each interaction with the blockchain follows
the format defined by expression (3).

Now, as part of the registration phase both SH and CH create and register their DID in
the VDSR via the setIdentity method. Next, SH is able to create the DID Document via the
setDidDocument method, although it may be updated each time the server has to expose
a new service using the same method. The only requirement for the provisioning phase
to take place is that SH has registered the DID Document, so that the set of services to be
exposed are selectable by the server’s owner. At this point, the user relates the public key
of the Modbus client (CH) and the service(s) he wants to access, using an OOB mechanism
such as a graphical interface (GUI). This relationship is updated in the blockchain via the
updWhiteList method. As part of channel securing phase, the CH request TLS connection and
after some steps of TLS specification [43] SH sends its certificate (X.509), where, according to
Section 4.1.2, both CH and SH have included DID as part of the certificate’s SAN extension.
In this way, both client and server, with verifier role, i.e., CV and SV will be able to verify
each other’s identity (via getIdentity method), since blockchain (VDSR) plays the role of CA.
Once the mutual TLS is completed, the channel is secured. As part of the verification phase,
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CH computes off-chain JWT, which is included as argument of getDidDoc method. Thus,
the VDSR requests on-chain, the authorization whitelist returning the service(s) enabled to
CH. In this way, SH authorizes the use of a resource, granting access to a Modbus service,
without the need for interaction with CH, putting in value the role of blockchain technology
for SSI, as a trusted mechanism that allows regulating the access to the SH data, enabling it
to decide with whom and when it shares its information. CH and SH are ready to transact
Modbus frames.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 19 
 

 

via the updWhiteList method. As part of channel securing phase, the CH request TLS con-
nection and after some steps of TLS specification [43] SH sends its certificate (X.509), where, 
according to Section 4.1.2, both CH and SH have included DID as part of the certificate’s 
SAN extension. In this way, both client and server, with verifier role, i.e., CV and SV will 
be able to verify each other’s identity (via getIdentity method), since blockchain (VDSR) 
plays the role of CA. Once the mutual TLS is completed, the channel is secured. As part 
of the verification phase, CH computes off-chain JWT, which is included as argument of 
getDidDoc method. Thus, the VDSR requests on-chain, the authorization whitelist return-
ing the service(s) enabled to CH. In this way, SH authorizes the use of a resource, granting 
access to a Modbus service, without the need for interaction with CH, putting in value the 
role of blockchain technology for SSI, as a trusted mechanism that allows regulating the 
access to the SH data, enabling it to decide with whom and when it shares its information. 
CH and SH are ready to transact Modbus frames. 

 
Figure 3. Interaction between entities and information processing by VDSR. 

In order to clarify the off-chain process, when the client requests the DID Document 
within the verification phase, the mbapSSI-SDK will be used in the off-chain side, in or 
der to create an object containing the getDidDoc method in JSON format. This method uses 
as arguments a JWT and the server’s DID. This plain text object is firstly encoded in base 
64, constituting the first part of the payload of expression (3) which uses the dot as a de-
limiter. Secondly, the same object is signed and then encoded in base 64, constituting the 
second part after the delimiter. At this point, the client DID and payload are sent as trans-
action arguments. 

Figure 3. Interaction between entities and information processing by VDSR.

In order to clarify the off-chain process, when the client requests the DID Document
within the verification phase, the mbapSSI-SDK will be used in the off-chain side, in or
der to create an object containing the getDidDoc method in JSON format. This method
uses as arguments a JWT and the server’s DID. This plain text object is firstly encoded in
base 64, constituting the first part of the payload of expression (3) which uses the dot as a
delimiter. Secondly, the same object is signed and then encoded in base 64, constituting
the second part after the delimiter. At this point, the client DID and payload are sent as
transaction arguments.
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5. Performance Evaluation

This section focuses on the evaluation of mbapSSI in terms of performance to deter-
mine its feasibility. The performance tests aim at isolating the first three phases from the
fourth phase. This is because the value of mbapSSI lies in the fact that the three initial
phases, excluding the provisioning phase, constitute the necessary mechanism (based on
SSI), to provide a secure communication channel (based on TLS) between a client and a
Modbus server. Therefore, the fourth phase is abstracted from the others to ensure the
simplicity, compatibility and interoperability of Modbus transactions.

Three performance metrics (processing time, latency, and throughput) are used for
the performance evaluation. Processing time represents the time required for a process
(e.g., a piece of code) to handle a given request. Latency is a measure of round-trip delay.
Throughput constitutes the ratio of the total transactions committed into the ledger in 1 s
(not all the sent transactions are always committed in the same second and are pooled in
the ordering node). The three metrics are evaluated in different ways, so processing time is
used to measure the performance of the mbapSSI phases: registration, channel securing
and verification (hereinafter referred to as “three-phases”); latency is used to measure the
performance of Modbus transactions; throughput is used to measure the performance of
mbapSSI interactions with HFB. Similarly, scalability is another important point in the
evaluation of mbapSSI performance, to determine the behavior of mbapSSI due to the
increase of organizations and therefore of requests, an n:1 connection pattern is followed,
i.e., “n” clients to “1” server. The provisioning phase is not measured since it constitutes an
OOB mechanism isolated from the other phases. The remainder of this section examines
the testbed used and the experiments conducted to demonstrate the feasibility of mbapSSI.

5.1. Testbed Description

Figure 4a shows the test network to be deployed. It is composed of organizations,
each of which contains a set of entities such as Modbus entity, orderer, peer0.org and CA.
Each organization constitutes a module and as needed new modules are added to the
testbed, which provides scalability. To achieve integration within a module the deployment
flexibility offered by the Docker infrastructure is used so that all elements represented for
an organization (Modbus entity, orderer, peer0.org and CA) are deployed from Docker
images. These containers are integrated into Docker Swarm worker nodes. In this way each
organization constitutes a worker node which will be orchestrated using Docker swarm.
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The default testbed would be two modules (organizations) including 1 Modbus-
client (e.g., Modbus-client1) and 1 Modbus-server. To obtain accurate results, an isolation
environment is needed, which is provided by an Amazon Elastic Compute Cloud (EC2)
instance, whose main feature is scalable performance from a basic level of CPU and memory.
The mbapSSI testbed included the deployment of a t2.2xlarge instance, which contains
8 intel AVXT CPUs (3.0 GHz) and 32 GB of memory [49]. It should be noted that the main
decision criteria for the deployment of a testbed with these characteristics has been that the
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HFB-network is deployed using Raft as an ordering service network instead Kafka or Solo
since it introduces less centralization [35].

5.2. Experiments Conducted

This section describes the experiments to be performed to demonstrate the feasibility
of mbapSSI and determine the overhead that mbapSSI introduces to the HFB network.
For this purpose, four types of experiments are conducted: Section 5.2.1 describes the
experiment that measures the processing time of the three-phases and the latency of
the Modbus transaction phase with a client–server 1:1 ratio; Section 5.2.2 describes the
experiment that measures the behavior of the processing times of the three-phases of
mbapSSI considering the scaling of the client–server ratios as follows: 4:1, 8:1, 16:1 and
32:1; Section 5.2.3 describes the experiment measuring the latency behavior of the Modbus
transaction phase of mbapSSI in isolation, considering the scaling of client–server ratios as
follows: 4:1, 8:1, 16:1 and 32:1; Section 5.2.4 describes the experiments to determine how
many transactions per second are supported by the deployed HFB network.

5.2.1. Performance of mbapSSI Phases at 1:1 Ratio

This experiment focuses on measuring the processing time of the three-phases of
mbapSSI that provide a decentralized identity, a secure channel, and the authorization to
use the Modbus resource, as well as the latency of the Modbus transaction phase. From
the testbed of Figure 4a, this experiment requires the deployment of two organizations,
one holding the client and the other holding the server. In order to measure the processing
time, since mbapSSI is based on python 3.8, we use the “process_time” tool of the time
library. Expressions (4) and (5) are the ways of using the tool, i.e., inserting them in the
code at the beginning and at the end of each phase, respectively. To determine the latency
of the Modbus transactions, a performance test was designed based on the flowchart
shown in Figure 4b, which represents a piece of code written in Python running on each
Modbus client, which simultaneously opens 10 connections (threads) to the server, per-
forming 1000 requests for each of the threads, collecting latency introduced by each of these
connections, so that the maximum and minimum value of this metric can be evaluated.

start = time.process_time (), (4)

end = time.process_time ()-start, (5)

5.2.2. Performance of the First Three Phases of mbapSSI Based on n:1 Ratio

This experiment aims to measure the behavior of the processing time of the three-
phases of mbapSSI under the stimulus of scaling the number of Modbus clients connected
simultaneously in ratios of 4:1, 8:1, 16:1 and 32:1, following the architecture of Figure 4a.
The maximum number of clients is 32, since this is the number commonly supported by
real devices such as the MGate MB3170/3270 as shown in its technical documentation [50].
Unlike the previous section, this experiment focuses on analyzing only the behavior of
processing time for three-phases of mbapSSI, using the same tools as in the first experiment,
i.e., expressions (4) and (5). For this purpose, 10 processing time measurements are collected
for each of the three-phases.

5.2.3. Performance of the Modbus Transaction Phase at n:1 Ratio

This experiment aims to measure the behavior of the latencies of the Modbus transac-
tion phase under the stimulus of scaling the number of simultaneously connected Modbus
clients in ratios of 4:1, 8:1, 16:1 and 32:1, following the architecture of Figure 4a. As in
Section 5.2.1, this experiment uses the performance test illustrated in Figure 4b. Consid-
ering that mbapSSI Modbus frames are transacted over a secure channel, the experiment
includes, as a benchmark, the same performance test applied to Modbus TCP.
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5.2.4. Measuring Transaction Throughput over the HFB Network

This experiment aims to determine the number of transactions per second that the
different network architectures deployed are able to support, so that it is possible to analyze
whether mbapSSI can cause overhead in the HFB network. For this purpose, 1000 transac-
tions are issued in a variable range, for each of the networks (1:1, 4:1, 8:1, 16:1 and 32:1)
defined based on Figure 4a. The Hyperledger Caliper tool [51], simplifies the transaction
evaluation workflow. Thus, a comparison between five types of networks created from
docker swarm clusters containing different architectures is carried out. Then, the maxi-
mum transaction throughput achieved will be compared with the number of interactions
performed by clients and server with HFB, assuming that all devices are connected simulta-
neously. All nodes in the HFB-network deployed have the same participation in transaction
endorsement.

6. Discussion of Results
6.1. Performance of mbapSSI Phases at 1:1 Ratio

This section contains the results of the experiment described in Section 5.2.1 and its
main objective is to determine a set of benchmark metrics to be used as a starting point
for the analysis in the other sections, since it constitutes the best case. Tables 3 and 4
summarize the maximum and minimum values of the processing time, as well as the
number of interactions with the blockchain for both the client and the server for each of
three-phases of mbapSSI. The registration phase presents a longer processing time for SH
than the CH, since it not only creates and registers its identity but also creates and registers
the DiD Document. The channel securing phase presents similar behavior for both entities,
as Figure 3 illustrates, based on the same number of interactions of both entities (CV and SV)
with the blockchain, as well as a number of symmetric interactions between CH and SH. It
should be noted that only CH participates in the verification phase. The processing time of
the verification phase involves the generation of a JWT by CH, as well as a single interaction
with the VDSR, hence it is as simple as CH’s processing time in the registration phase.

Table 3. Processing time measurements of three-phases of mbapSSI for the client.

Phase Modbus Client Time Min Modbus Client Time Max HFB Invocations HFB Queries

Registration 12.1 ms 19.7 ms 1 0
Channel Securing 26.2 ms 33.8 ms 0 1

Verification 14.6 ms 19.2 ms 0 1
Total 52.9 ms 71.7 ms 1 2

Table 4. Processing time measurements of three-phases of mbapSSI for the server.

Phase Modbus Server Time Min Modbus Server Time Max HFB Invocations HFB Queries

Registration 23.9 ms 31.2 ms 2 0
Channel Securing 28.7 ms 39.6 ms 0 1

Total 51.6 ms 70.8 ms 2 1

At this point, the performance test of the Figure 4b is performed on both the mbapSSI
secure connection and insecure Modbus TCP connection, which is used for benchmark
purposes. Table 5 collects the maximum and minimum latencies for both connections. Since
the latencies achieved are below the time defined as typical reaction time for an industrial
TCP connection, i.e., 100 ms [18], it can be considered that for this mbapSSI baseline case,
the achieved latency values are acceptable.
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Table 5. Latencies measurements of the fourth phase of mbapSSI.

Phase Client-Server TCP
Min Time

Client-Server TCP
Max Time

Client-Server TLS
Min Time

Client-Server TLS
Max Time

Modbus transaction 0.49 ms 0.54 ms 1.12 ms 1.37 ms

6.2. Performance of the Three-Phases of mbapSSI Based on n:1 Ratio

In this section we analyze the effects, in terms of maximum and minimum processing
times, when the number of mbapSSI client scales follows the next ratios: 4:1, 8:1, 16:1 and
32:1. In this way, a comparison with the results of Section 5.1 is established. Figure 5a shows
the behavior of processing time when the number of clients deployed for the registration
phase is increased. For each architecture, only one server is deployed and, since CH and SH
do not interact with each other at this phase, the processing times obtained for the server
are practically the same as those achieved in Section 5.1. In this way, the server processing
time is closer to the processing time for registering 8 clients if the maximum and minimum
processing times are considered. Figure 5b also shows the behavior of the processing
time when the number of clients deployed for the securing channel phase is increased.
Unlike the registration phase, in this phase there is a client–server interaction, hence the
behavior of the server will depend on the number of clients simultaneously interacting
with it. The results show that the higher the number of clients, the higher the maximum
processing time for the server, which can be explained by the overhead accumulated after
processing interactions with some clients. Despite this scenario, when comparing the
extreme cases for the server, i.e., the reference architecture (1:1) and the worst case, i.e., the
32:1 architecture, the differences between the maximum and minimum processing time
values are still acceptable: 45.8 ms for the maximum processing time and 32.7 ms for the
minimum processing time. Figure 5c shows the behavior of the processing time for the
verification phase when the number of clients increases. When comparing the minimum
and maximum processing time values between clients of the reference architecture, i.e.,
1:1, and the 32:1 architecture, the difference is 10.9 ms for the minimum processing time
and 13.2 ms for the maximum processing time, keeping acceptable performance levels in
both cases.
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6.3. Performance of the Modbus Transaction Phase at n:1 Ratio

The isolation of the fourth phase of mbapSSI aims to ensure that once the first three
phases of mbapSSI have been successfully completed, the Modbus transactions maintain
the requirements of simplicity, compatibility, and interoperability. For this purpose, using
as a reference the latency achieved by applying the performance test in Figure 4b over
Modbus TCP, the same experience is compared over Modbus TLS. Figure 6 includes the
repetition for the experiment (latencies’ measurements for Modbus transactions) for the
next client–server architectures: 4:1, 8:1, 16:1 and 32:1.
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The best- and worst-case scenarios are compared to reach conclusions, i.e., the latency
of the reference architecture 1:1 and the worst case, i.e., the 32:1 architecture. Thus, 1 TCP
client has a maximum latency of 0.54 ms, while 1 TLS client has a maximum latency of
1.37 ms. Using the same measurement criteria per client, 32 TCP clients have a latency
of 39.3 ms, while 32 Modbus TLS have a latency of 63.3 ms. All these times achieved
are below the time defined as typical reaction time for an industrial TCP connection, i.e.,
100 ms [18], hence it can be considered that mbapSSI allows to keep the aforementioned
Modbus properties.

6.4. Measuring Transaction Throughput over the HFB Network

As mentioned in Section 5.2.4, 1000 transactions are sent at variable rate for each of the
five possible network scenarios to determine the performance of these transactions. Based
on the chaincode design of Figure 2, the setIdentity method was selected as the test method
because it is performed by the participant entities at boot time. Considering that the block
size is fixed at 100 transactions per block or 2 MB [35] and that the validation policy forces
all organizations to validate transactions, i.e., all organizations have the same weight in the
consensus, Figure 7 shows the throughput behavior for each of the defined architectures.
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The saturation point should be highlighted for each of the five cases, since it represents
the point from which the number of transactions per second stops growing. Analyzing the
extreme cases, 1:1 and 32:1, with the best and worst saturation point, respectively, the 1:1
architecture reaches saturation for a throughput of 129.6 tps, i.e., of the 150 transactions
sent, 129.6 transactions are successfully committed into the ledger in 1 s, while the 32:1
architecture reaches saturation for a throughput of 37.2 tps, i.e., of the 50 transactions
sent, 37.2 transactions are successfully committed into the ledger in 1 s. The remaining
transactions sent will be committed in subsequent intervals. To determine the overhead
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that the mbapSSI boot time can cause on HFB, from Figure 5 the number of interactions are
computed until all identities have been registered. Thus, for this interval, the identity regis-
tration of the CH and the SH will be considered as a concurrent transaction. Table 6 collects
for each architecture the concurrent transactions, the saturation point, and the sending
rate associated with that saturation. Hence, in the 32:1 scenario, where the simultaneous
registration of the 32 clients and 1 server (which requires 66 concurrent transactions), reach
the saturation point, the remaining pending transactions would be committed in the next
second. However, considering that this registration is carried out only once and is not
interfering in the transaction execution time, the boot-time overhead of mbapSSI over HFB
might not be considered a problem.

Table 6. Determination of the boot-time overhead of mbapSSI over HFB.

Architecture mbapSSI Concurrent Transactions Saturation Point (tps) Sent Rate (tps)

1:1 2 129.6 150
4:1 10 100 100
8:1 18 97 100

16:1 34 70 75
32:1 66 37.2 50

Nevertheless, there are also ways to avoid this overhead. It is necessary on the one
hand to decrease the block size, since performance analyses show decreasing the block size
implies better throughput and lower latency [52]. On the other hand, reducing the number
of endorsing peers in the HFB-network allow fewer entities to execute transactions and
therefore transaction could be ordered into the block quickly; however, this implies that
there must be greater trust between the organizations.

This results discussion section has demonstrated the feasibility of mbapSSI in terms of
performance and scalability. The achievement of reasonable processing times in each of
the phases that ensure Modbus transactions, the latency levels below the benchmark for
industrial environments achieved in Modbus transactions and the optimal performance of
mbapSSI interactions with HFB, for environments with up to 32 deployed organizations
attest that statement.

7. Conclusions

Modbus is a widely used IIoT protocol based on three main features: simplicity, com-
patibility, and interoperability, but which lacks security. In this regard, Access Control
Systems emerge as a solution. However, common access control solutions are based on cen-
tralized systems that include well known drawbacks: a single point of failure and limited
scalability. This manuscript examines an Access Control System based on Self-Sovereign
Identity over Hyperledger Fabric Blockchain from an Identity and Access Management
perspective. The designed decentralized identity system supports on-chain authentication
and authorization. Hence, it provides not only security for Modbus connections, but also
ensures scalability in environments with more than one organization. The performed exper-
iments and a subsequent critical discussion demonstrate that processing times achieved for
the registration, channel securing and verification phases, as well as the latency achieved
for Modbus transactions and the throughput achieved for mbapSSI transactions over HFB
guarantee both the feasibility and scalability of mbapSSI and the simplicity, compatibility,
and interoperability of Modbus. However, self-sovereign identity in machine-to-machine
(IIoT) environments is in its infancy, therefore, our next approach is to eliminate the need
for user involvement, achieving a fully machine-to-machine interaction, for which we
are currently studying the OAuth machine-to-machine scheme to guarantee access to
resources [42]. This approach should be fully compliant with DID standard [23]. Likewise,
authorization mechanisms based on verifiable credentials are under study, a line in which
Siemens is undertaking important steps to support selective disclosure based on Zero
Knowledge Proofs [53]. These are the subjects of future lines of research. Additionally,
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mbapSSI supports the default accountability provided by blockchain, so we are also de-
veloping specific chaincodes for monitoring logs and event emission that integrate access
control systems.
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