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Abstract: In a network, a distributed consensus algorithm is fully characterized by its weighting
matrix. Although there exist numerical methods for obtaining the optimal weighting matrix,
we have not found an in-network implementation of any of these methods that works for all
network topologies. In this paper, we propose an in-network algorithm for finding such an optimal
weighting matrix.
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1. Introduction

A sensor is a device capable of measuring a certain physical property. Normally, in a wireless
sensor network (WSN), each sensor or node can transmit and receive data wirelessly, and it has the
ability of performing multiple tasks, which are usually based on simple mathematical operations such
as additions and multiplications. Moreover, the sensors within a WSN are usually powered with
batteries, leading to very limited energy resources.

For most tasks, it is required that each sensor computes a target value that depends on the values
measured by other sensors of the WSN. Commonly, a WSN has a central entity, known as the central
node, which collects the values measured by all the sensors, computes the target values, and sends
each target value to the corresponding sensor. This strategy is known as centralized computation.

The main disadvantage of the centralized computation strategy is that it is extremely energy
inefficient from the transmission point of view because, when a sensor is far away from the central
node, it has to consume disproportionate amounts of energy, with respect to the energy provided by its
battery, in order to transmit its measured value to the central node. An alternative strategy to overcome
the energy inefficiency of the centralized computation is the distributed or in-network computation
strategy. In distributed computation, which is a cooperative strategy, each sensor computes its target
value by interchanging information with its neighbouring sensors.

In many recent signal processing applications of distributed computations (e.g., [1–4]), the average
needs to be computed (i.e., each sensor seeks the arithmetic mean of the values measured by all the
sensors of the WSN). The problem of obtaining that average in all the sensors of the WSN by using the
distributed computation strategy is known as the distributed averaging problem, or the distributed
average consensus problem. Moreover, the problem of obtaining the same value in all the sensors of
the WSN by using the distributed computation strategy is known as the distributed consensus problem
(see, for example, [5] for a review on this subject).

A common approach for solving the distributed averaging problem is to use a synchronous
linear iterative algorithm that is characterized by a matrix, which is called the weighting matrix.
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A well-known problem related to this topic is that of finding a symmetric weighting matrix that
achieves consensus as fast as possible. This is the problem of finding the fastest symmetric distributed
linear averaging (FSDLA) algorithm.

The FSDLA problem was solved in [6]. Specifically, in [6], the authors proved that solving
the FSDLA problem is equivalent to solving a semidefinite program, and they used the subgradient
method for efficiently solving such a problem to obtain the corresponding weighting matrix.
Unfortunately, solving the FSDLA problem this way requires a central entity with full knowledge of
the entire network. This central entity has to solve the FSDLA problem and then communicate the
solution to each node of the network. This process has to be repeated each time the network topology
changes due to, for example, a node failing, a node being added or removed (plug-and-play networks),
or a node changing its location.

Moreover, WSNs may not have a central entity to compute the optimal weighting matrix.
This paper proposes, for those networks without a central entity, an in-network algorithm for finding
the optimal weighting matrix.

It is worth mentioning that in the literature, one can find other in-network algorithms that solve
the FSDLA problem in a distributed way. In particular, in [7], the authors present an in-network
algorithm that computes the fastest symmetric weighting matrix, but only with positive weights.
As will be made more explicit in the next section, this matrix is not a solution of the FSDLA problem in
general, as the latter might contain negative weights.

In [8], the FSDLA problem is solved in a centralized way when the communication among nodes
is noisy. Closed-form expressions for the optimal weights for certain network topologies (paths, cycles,
grids, stars, and hypercubes) are also provided. However, unless the considered network topology is
one of these five, an in-network solution to the FSDLA is not provided.

Finally, in [9], an in-network algorithm for solving the FSDLA problem is provided. However,
as the authors claim, the algorithm breaks down when the second- and third-largest eigenvalues of the
weighting matrix become similar or equal.

Unlike the approaches found in the literature, the in-network algorithm presented in this paper
is proved to always converge to the solution of the FSDLA problem, irrespective of the considered
network topology.

2. Preliminaries

2.1. The Distributed Average Consensus Problem

We consider a network composed of n nodes. The network can be viewed as an undirected graph
G = (V , E), where V = {1, 2, . . . , n} is the set of nodes and E is the set of edges. An edge e = {i, j} ∈ E
means that nodes i, j ∈ V are connected and can therefore interchange information. Conversely,
if {i, j} /∈ E , this means that nodes i, j ∈ V are not connected and cannot interchange information. We
let K be the cardinal of E , i.e., K is the number of edges in the graph G. For simplicity, we enumerate
the edges in the graph G as E = {e1, e2, . . . , eK}, where ek = {ik, jk} for all k ∈ {1, 2, . . . , K}.

We assume that each node i ∈ V has an initial value xi(0) ∈ R, where R denotes the set of (finite)
real numbers. Accordingly, in this paper, Rm×n denotes the set of m× n real matrices. We consider
that all the nodes are interested in obtaining the arithmetic mean (average) xave of the initial values of
the nodes, that is,

xave :=
1
n

n

∑
i=1

xi(0),

using a distributed algorithm. This problem is commonly known as the distributed averaging problem,
or the distributed average consensus problem.
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The approach that will be considered here for solving the distributed averaging problem is to use
a linear iterative algorithm of the form

xi(t + 1) = wi,ixi(t) + ∑
j∈V : {i,j}∈E

wi,jxj(t), i ∈ V (1)

where time t is assumed to be discrete (namely, t ∈ {0, 1, 2, . . .}) and wi,j ∈ R are the weights that need
to be set so that

lim
t→∞

xi(t) = xave (2)

for all i ∈ V and for all x1(0), x2(0), . . . , xn(0) ∈ R. From the point of view of communication
protocols, there exist efficient ways of implementing synchronous consensus algorithms of the form of
Equation (1) (e.g., [10]).

We observe that Equation (1) can be written in matrix form as

x(t + 1) = Wx(t) (3)

where x(t) = (x1(t), x2(t), . . . , xn(t))
> ∈ Rn×1, and W ∈ Rn×n is called the weighting matrix, which is

such that its entry at the ith row and jth column, [W ]i,j, is given by

[W ]i,j =

{
0 if i 6= j and {i, j} /∈ E ,

wi,j otherwise.
i, j ∈ {1, 2, . . . , n} (4)

Therefore, Equation (2) can be rewritten as

lim
t→∞

W t = Pn (5)

where Pn := 1
n 1n1>n , and 1n is the n× 1 matrix of ones.

We only consider algorithms of the form of Equation (3), for which the weighting matrix
W is symmetric. If W is symmetric, it is shown in [6] (Theorem 1) that Equation (5) holds if
and only if W1n = 1n and ‖W − Pn‖2 < 1, where ‖ · ‖2 denotes the spectral norm. For the
reader’s convenience, we here recall that if A ∈ Rn×n is symmetric, then ‖A‖2 = |λ1(A)|, where
λl(A), l ∈ {1, 2, . . . , n}, denote the eigenvalues of A, which, in this paper, are arranged such that
|λ1(A)| ≥ |λ2(A)| ≥ . . . ≥ |λn(A)| (e.g., [11] (pp. 350, 603)).

We observe that Equation (10) can be computed in a distributed way if each node i ∈ V is able to
know yi. The following result provides a means of computing such a unit eigenvector y of W(w) in
a distributed way.

2.2. Considered Minimization Problem: FSDLA Problem

We denote withW(G) the set of all the n× n real symmetric matrices that satisfy Equation (4)
and W1n = 1n simultaneously, that is,

W(G) :=
{

W ∈ Rn×n, [W ]i,j = 0 if i 6= j and {i, j} /∈ E ,

W = W>, W1n = 1n

}
.

In [6], the convergence time of an algorithm of the form of Equation (3) with symmetric weighting
matrix W is defined as

τ(W) :=
−1

log ‖W − Pn‖2
(6)

This convergence time is a mathematical measure of the convergence speed of the algorithm.
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According to the previous, we call the FSDLA problem to find a weighting matrix Wopt ∈ W(G)

such that
‖Wopt − Pn‖2 ≤ ‖W − Pn‖2 ∀W ∈ W(G) (7)

We observe that in this definition the meaning of fastest is in terms of convergence time.
It is shown in [6] that the FSDLA problem of Equation (7) is a constrained convex minimization

problem that can be efficiently solved. In fact, in [6], it is shown that the FSDLA problem of Equation (7)
can be expressed as a semidefinite program, and semidefinite programs can be efficiently solved [12].
However, to the best of our knowledge, there are yet no approaches for solving this FSDLA problem
in a distributed (in-network) way. The contribution of this paper is to solve the FSDLA problem of
Equation (7) in a distributed way. To do so, we develop a distributed subgradient method.

Finally, it should be mentioned that in [7], the authors solved, in a distributed way, a related
problem: they find the fastest mixing Markov chain (FMMC). The FMMC problem is devoted
to finding a matrix W+

opt ∈ W(G) ∩ {W ∈ Rn×n : [W ]i,j ≥ 0, ∀i, j ∈ {1, . . . , n}} such that
‖W+

opt − Pn‖2 ≤ ‖W − Pn‖2 for all W ∈ W(G) ∩ {W ∈ Rn×n : [W ]i,j ≥ 0, ∀i, j ∈ {1, . . . , n}}.
We observe that ‖Wopt − Pn‖2 ≤ ‖W+

opt − Pn‖2, i.e., the solution of the FSDLA problem is faster than,
or is at least as fast as, the solution of the FMMC problem.

2.3. FSDLA as an Unconstrained Convex Minimization Problem

In order to use a distributed subgradient method (the classical reference on subgradient methods
is [13]), we first need to convert the FSDLA problem into an unconstrained convex minimization
problem. We observe that if W ∈ W(G), it is clear that W depends on wek := wik ,jk for all
k ∈ {1, 2, . . . , K}. We notice that wek is well defined because W is symmetric. In fact, as it was
stated in [6], given the vector w = (we1 , we2 , . . . , weK )

> ∈ RK×1, there exists a unique W ∈ W(G) such
that [W ]ik ,jk

= wek for all k ∈ {1, 2, . . . , K}, namely

W (w) = In +
K

∑
k=1

wek Ak (8)

where In is the n× n identity matrix and Ak ∈ Rn×n is defined as

[Ak]i,j :=


1 {i, j} = {ik, jk},
−1 i = j = ik or i = j = jk,
0 otherwise.

∀k ∈ {1, 2, . . . , K}

In other words, the function W : RK×1 7→ W(G) defined in Equation (8) is a bijection. We define
the function f : RK×1 7→ [0, ∞) as f (w) := ‖W (w)− Pn‖2. We observe that the FSDLA problem of
Equation (7) can now be expressed as an unconstrained minimization of the function f .

In the sequel, we denote with ŵ a solution of the FSDLA problem, that is,

f (ŵ) ≤ f (w) ∀w ∈ RK×1.

It is easy to show that f has a bounded set of minimum points ŵ. In the sequel, we will refer to
the function f as the cost function of the FSDLA problem. We finish the section with Lemma 1 which
will be useful in the derivation of the algorithm.

Lemma 1. If w ∈ RK×1, then

f (w) =

{
|λ1(W(w))| if |λ2(W(w))| ≥ 1,
|λ2(W(w))| if |λ2(W(w))| < 1.
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Proof. Observe that as W = W(w) is symmetric and W1n = 1n, there exists an eigenvalue
decomposition of W , W = Udiagn (1, λ2(W), . . . , λn(W))U>, where U is a real n × n orthogonal
matrix such that [U]i,1 = 1√

n for all i ∈ {1, 2, . . . , n} and |λ2(W)| ≥ |λ3(W)| ≥ . . . ≥ |λn(W)|.
As Pn = Udiagn (1, 0, . . . , 0)U>, we have

f (w) = ‖W − Pn‖2 = ‖Udiagn (0, λ2(W), . . . , λn(W))U>‖2

= ‖diagn (0, λ2(W), . . . , λn(W)) ‖2 = |λ2(W)|.

3. Algorithm for the In-Network Solution of the FSDLA Problem

We here derive the algorithm that solves the FSDLA problem in a distributed way (Algorithm 1).
To this end, we assume that n is known by all the nodes of the network. The task of counting nodes
can be performed in a distributed way (see [14]). The algorithm is a distributed implementation of
a subgradient method. More specifically, each pair of nodes {ik, jk} will update their weight wik ,jk
according to the following iterative formula:

wp+1 = wp − ηp+1 ∇̃ f (wp) (9)

where wp ∈ RK×1 is the vector of weights at the pth step, ηp ∈ R is the stepsize, and ∇̃ f (w) is
a subgradient of f at w. We recall here that a vector ∇̃ f (w) ∈ RK×1 is a subgradient of f : RK×1 7→ R

at w ∈ RK×1 if f (v) ≥ f (w) + (∇̃ f (w))>(v−w) for all v ∈ RK×1.

Theorem 1. If w ∈ RK×1 such that 0 < f (w) < 1, and y = (y1, y2, . . . , yn)
> ∈ Rn×1 is such that ‖y‖ = 1

and W(w)y = (−1)s|λ2(W(w))|y for some s ∈ {1, 2}, then a subgradient of f at w is

∇̃ f (w) = (−1)s+1


(
yi1 − yj1

)2

...(
yiK − yjK

)2

 (10)

We observe that Equation (10) can be computed in a distributed way if each node i ∈ V is able to
know yi. The following result provides a means of computing such a unit eigenvector y of W(w) in
a distributed way.

The rest of the section is devoted to proving that Equation (9) can be computed in a distributed
way (Theorems 1–3), and to proving that Equation (9) actually converges to ŵ (Theorem 4).

In order to compute Equation (9) in a distributed way, we need to compute a subgradient of f in
a distributed way. With this in mind, we review a result given in [6].

Theorem 2. If w ∈ RK×1 is such that 0 < f (w) < 1, then for all x(0) ∈ Rn×1,

W(w)ys = (−1)s|λ2(W(w))|ys s ∈ {1, 2} (11)

where

ys := lim
t→∞

(
x(t)− x(t− 2)

((−1)s f (w))t +
x(t− 1)− x(t− 3)

((−1)s f (w))t−1

)
(12)

and x(t) = (W(w))t x(0) for all t ∈ {0, 1, 2, . . .}. Furthermore, given s ∈ {1, 2}, for almost every
x(0) ∈ Rn×1, the following assertions are equivalent:

(a) ys 6= 0n×1, where 0n×1 is the n× 1 zero matrix.
(b) (−1)s|λ2(W(w))| is an eigenvalue of W(w).
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Algorithm 1 In-network solution of the FSDLA problem.

1: p← 0

2: for all pair of nodes ek = {ik, jk} do

3: [w0]k ← 1/ max(dik , djk )

4: end for

5: p← p + 1

6: for all nodes i ∈ V do

7: [x]i ← rand() . An arbitrary value

8: [γ1]i ←
[
avewp(x, t0)

]
i
−
[
avewp(x, t0 − 1)

]
i

9: [γ2]i ←
[
avewp(x, t0 − 1)

]
i
−
[
avewp(x, t0 − 2)

]
i

10: f (wp) = ‖W(wp)− Pn‖2 ←
√

[avewp(([γ1]
2
1,...,[γ1]

2
n)> ,t0)]i

[avewp(([γ2]
2
1,...,[γ2]

2
n)> ,t0)]i

11: if f (wp) ≥ 1 then

12: wp ← wp−1

13: end if

14: [y1]i ←
[avewp (x,t0)]i−[avewp (x,t0−2)]i

(− f (wp))
t0

+
[avewp (x,t0−1)]i−[avewp (x,t0−3)]i

(− f (wp))
t0−1

15: [y2]i ←
[avewp (x,t0)]i−[avewp (x,t0−2)]i

( f (wp))
t0

+
[avewp (x,t0−1)]i−[avewp (x,t0−3)]i

( f (wp))
t0−1

16: ‖y1‖ ←
√[

avewp

(
([y1]

2
1, . . . , [y1]2n)

>, t0
)]

i

17: if ‖y1‖ 6= 0 then

18: [y]i ← [y1]i/‖y1‖

19: s← 1

20: else

21: ‖y2‖ ←
√[

avewp

(
([y2]

2
1, . . . , [y2]2n)

>, t0
)]

i

22: [y]i ← [y2]i/‖y2‖

23: s← 2

24: end if

25: end for

26: for all pair of nodes ek = {ik, jk} do

27: [∇̃ f (wp)]k ← (−1)s+1 ([y]ik − [y]jk
)2

28: [wp]k ← [wp−1]k − βp[∇̃ f (wp)]k

29: end for

30: if p < pmax go to 5
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Proof. Let W = W(w) = Udiagn (1, λ2(W), . . . , λn(W))U> be as in the proof of Lemma 1,
with U = (u1|u2| . . . |un). Observe that λ2(W) 6= 0, as |λ2(W)| = f (w) 6= 0.

If (−1)s−1|λ2(W)| is an eigenvalue of W for some s ∈ {1, 2}, then we denote by Ls its algebraic
multiplicity. Otherwise we set Ls = 0. From Lemma 1, f (w) = |λ2(W)| and consequently L1

and L2 cannot be simultaneously zero. Moreover, without loss of generality we can assume that
λ2(W) ≥ . . . ≥ λL1+L2+1(W).

Then, we have that

x(t) = W tx(0) = W t

(
n

∑
l=1

αlul

)
=

n

∑
l=1

αlW
tul

= α1W tu1 +
L1+1

∑
l=2

αlW
tul +

L1+L2+1

∑
l=L1+2

αlW
tul +

n

∑
l=L1+L2+2

αlW
tul

= α1u1 +
L1+1

∑
l=2

αl |λ2(W)|tul +
L1+L2+1

∑
l=L1+2

αl(−1)t|λ2(W)|tul +
n

∑
l=L1+L2+2

αlλl(W)tul (13)

= α1u1 + |λ2(W)|t
(

L1+1

∑
l=2

αlul + (−1)t
L1+L2+1

∑
l=L1+2

αlul

)
+

n

∑
l=L1+L2+2

αlλl(W)tul

= α1u1 + |λ2(W)|t
(
(−1)ta1 + a2

)
+ r(t) ∀t ∈ {0, 1, 2, . . .}

where αl = (x(0))> ul for all l ∈ {1, 2, . . . , n},

a1 :=
L1+L2+1

∑
l=L1+2

αlul ,

a2 :=
L1+1

∑
l=2

αlul ,

and

r(t) :=
n

∑
l=L1+L2+2

αlλl(W)tul .

Observe that
Was = (−1)s|λ2(W)|as ∀s ∈ {1, 2} (14)

On the one hand, from Equation (13), we obtain

x(t)− x(t− 2)
|λ2(W)|t =

|λ2(W)|t
(
(−1)ta1 + a2

)
+ r(t)

|λ2(W)|t −
|λ2(W)|t−2 ((−1)t−2a1 + a2

)
− r(t− 2)

|λ2(W)|t

=
(

1− |λ2(W)|−2
) (

(−1)ta1 + a2
)
+

r(t)− r(t− 2)
|λ2(W)|t

for all t ∈ {2, 3, . . .}. On the other hand, as |λl(W)| < |λ2(W)| for all l ∈ {L1 + L2 + 2, . . . , n},
we have that

lim
t→∞

r(t)
|λ2(W)|t = lim

t→∞

n

∑
l=L1+L2+2

αl
λl(W)t

|λ2(W)|t ul = lim
t→∞

n

∑
l=L1+L2+2

αl

(
λl(W)

|λ2(W)|

)t
ul = 0n×1.
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Consequently,

ys = lim
t→∞

(
x(t)− x(t− 2)

((−1)s|λ2(W)|)t +
x(t− 1)− x(t− 3)

((−1)s|λ2(W)|)t−1

)

= lim
t→∞

(
1− |λ2(W)|−2

(−1)st

(
(−1)ta1 + a2 + (−1)s

(
(−1)t−1a1 + a2

))
+

r(t)− r(t− 2)

((−1)s|λ2(W)|)t +
r(t− 1)− r(t− 3)

((−1)s|λ2(W)|)t−1

)
(15)

= lim
t→∞

(
1− |λ2(W)|−2

(−1)st

(
(−1)ta1 + a2 + (−1)s

(
(−1)t−1a1 + a2

)))
= 2

(
1− |λ2(W)|−2

)
as, s ∈ {1, 2}

Combining Equations (14) and (15), we obtain Equation (11).
From Equation (11), (a) implies (b) for all x(0) ∈ Rn×1.
As f (w) < 1, from Lemma 1 and Equation (15), we have ys 6= 0n×1 if and only if as 6= 0n×1.

Consequently, if (b) holds, the set of x(0) such that as = 0n×1 is a vector space whose dimension is
less than n; thus it has Lebesgue measure 0. Therefore, (a) and (b) are equivalent for almost every
x(0) ∈ Rn×1.

Theorem 2 implies that ‖y1‖ and ‖y2‖ cannot be zero simultaneously. Therefore, either y1
‖y1‖

or
y2
‖y2‖

is the unit eigenvector required for computing Equation (10). We notice that the norm of a vector
can be computed in a distributed way because it is the square root of n times the average of the squares
of its entries. Consequently, we only need to know how to compute Equation (12) in a distributed way,
or equivalently, how to compute the cost function f in a distributed way:

Theorem 3. If w ∈ RK×1 such that f (w) 6= 0, then

f (w) = lim
t→∞

‖x(t)− x(t− 1)‖
‖x(t− 1)− x(t− 2)‖ (16)

for almost every x(0) ∈ Rn×1, where x(t) = (W(w))t x(0) for all t ∈ {0, 1, 2, . . .}.

Proof. Let W = W(w) = Udiagn (1, λ2(W), . . . , λn(W))U> be as in the proof of Lemma 1,
with U = (u1|u2| . . . |un). Then,

x(t) = W tx(0) = W t

(
n

∑
l=1

αlul

)
=

n

∑
l=1

αlW
tul

= α1W tu1 +
n

∑
l=2

αlW
tul = α1u1 +

n

∑
l=2

αlλl(W)tul

for all t ∈ {0, 1, 2, . . .}, where αl = (x(0))> ul for all l ∈ {1, 2, . . . , n}. Consider L ∈ {0, 1, . . . , n− 2}
such that |λ2(W)| = |λ3(W)| = . . . = |λ2+L(W)|. Observe that λ2(W) 6= 0, as |λ2(W)| = f (w) 6= 0.
Consequently, from the pythagorean theorem,
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‖x(t)− x(t− 1)‖2 =

∥∥∥∥∥ n

∑
l=2

αl

(
λl(W)t − λl(W)t−1

)
ul

∥∥∥∥∥
2

=
n

∑
l=2

α2
l

(
λl(W)t − λl(W)t−1

)2

=
n

∑
l=2

α2
l (λl(W)− 1)2 λl(W)2t−2

= λ2(W)2t−2

(
L+2

∑
l=2

α2
l (λl(W)− 1)2 +

n

∑
l=L+3

α2
l (λl(W)− 1)2

(
λl(W)

λ2(W)

)2t−2
)

for all t ∈ {1, 2, . . .}. Assume that ∑L+2
l=2 α2

l 6= 0, which holds for almost every x(0) ∈ Rn×1.
As |λ2(W)| > |λl(W)| for all l ∈ {L + 3, . . . , n}, we conclude that

lim
t→∞

‖x(t)− x(t− 1)‖
‖x(t− 1)− x(t− 2)‖ = |λ2(W)|

√√√√∑L+2
l=2 α2

l (λl(W)− 1)2

∑L+2
l=2 α2

l (λl(W)− 1)2 = |λ2(W)| = f (w).

We observe that Equation (16) can be computed in a distributed way because a norm can be
computed in a distributed way. Moreover, we observe that the condition f (w) = 0 holds if and
only if W = Pn (this is possible only if every pair of nodes of the network is connected, i.e., it is a
fully-connected network; in this case, Wopt = Pn and consequently the FSDLA problem makes no
sense). Therefore, for any non-fully-connected network, f (w) 6= 0.

At this point, we have shown that the iterative Equation (9) can be computed in a distributed way.
It only remains to be shown that Equation (9) actually converges to ŵ:

Theorem 4. Consider w0 ∈ RK×1 such that 0 < f (w0) < 1. Let {ηp} be a sequence of real numbers satisfying
limp→∞ ηp = 0 and ∑∞

p=0 ηp = ∞. We also assume that

0 < f (wp) < 1 ∀p ∈ {1, 2, . . .} (17)

where wp is defined in Equation (9). Then, f (ŵ) = ‖Wopt − Pn‖2 = limp→∞ f (wp).

Proof. Theorem 1 yields

ηp

∥∥∥∇̃ f (wp)
∥∥∥ = ηp

√√√√ K

∑
k=1

(
yik − yjk

)4 ≤ 4
√

K max
p∈{0,1,2,...}

ηp.

Consequently, as f has a bounded set of minimum points, the result now follows from [13]
(Theorem 2.4).

We observe that the initial point w0 in Theorem 4 can be taken, for instance, as that given by
the Metropolis-Hastings algorithm (e.g., [8]). That is, if w0 is that given by the Metropolis-Hastings
algorithm, then [w0]k,1 = 1

max (dik
,djk

)
for all k ∈ {1, 2, . . . , K}, where di is the degree of node i ∈ V

(i.e., the number of nodes to which node i is connected). Therefore, w0 can be computed in
a distributed way.

Table 1 relates Algorithm 1 with the theoretical aspects shown in this section.
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Table 1. Explanation of Algorithm 1.

Lines Description

2–4 Initialize with Metropolis-Hastings algorithm (Theorem 4)
7–10 Computation of the cost function f according to Theorem 3
11–13 Choose the correct subsequence according to Remark 1
14–15 Compute y1 and y2 as in Theorem 2
17–24 Obtain a unit eigenvector y from y1 and y2

27 Compute subgradient as in Theorem 1
28 Update as in Equation (9)

Remark 1. As f is continuous, from every initial sequence of real numbers {βp} with limp→∞ βp = 0 and
∑∞

p=0 βp = ∞ (e.g. {βp} =
{

1/
√

p
}

), a subsequence of stepsizes {ηp} = {βσ(p)} satisfying Equation (17)
can be constructed.

We finish the section by describing Algorithm 1. For ease of notation, we define

avew(x, t) := (W(w))t x t ∈ {0, 1, 2, . . .}, x ∈ Rn×1,

which is the tth iteration of Equation (1) and can clearly be computed in a distributed way. As for
Algorithm 1, we fix t0 to be the number of iterations of Equation (1) required for a desired precision.
We observe that because the worst possible network topology is a path, if we set t0 ≥ log ε

log cos(π/n) , then
‖avew(x, t0)− xave1n‖2 ≤ ε‖x‖2 (see [15]), and therefore t0 can also be obtained in a distributed way.

4. Numerical Results

We here present the numerical results obtained using Algorithm 1 for two networks with n = 16
nodes. The chosen starting point w0 was that given by the Metropolis-Hastings algorithm [8], and
the chosen initial sequence of stepsizes was {βp} =

{
1√
p

}
for all p ∈ {1, 2, . . .}. Moreover, we took

t0 = 250 ≈ log 10−2

log cos(π/16) .

Figure 1 shows the convergence time τ
(
W(wp)

)
for the network presented in Figure 2 (solid

line). Figure 1 also shows τ(Wopt) = 10.03, which was obtained by using CVX, a package
for specifying and solving convex programs in a centralized way [16,17] (dashed line). Finally,
Figure 1 also shows the minimum value of τ

(
W(wp)

)
obtained up to step p (dotted line). For

comparison purposes, we observe that the convergence time yielded by the Metropolis-Hastings
algorithm was τ (W(w0)) = 20.81, while the minimum convergence time obtained after 150 iterations
of our algorithm was 10.31.
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minl∈{0,1,...,p} τ (W(wl))

Figure 1. Numerical results for the graph of 16 nodes shown in Figure 2.
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Figure 2. Graph with n = 16 nodes considered in Figure 1.

Figure 3 is of the same type as Figure 1, but in this case, the considered network was a
4× 4 grid. In this case, if the problem is optimally solved in a centralized way it yields τ(Wopt) = 2.89.
The convergence time yielded by the Metropolis-Hastings algorithm was τ (W(w0)) = 4.91, while the
minimum convergence time obtained after 150 iterations of our algorithm was 2.99.
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minl∈{0,1,...,p} τ (W(wl))

Figure 3. Numerical results for the grid of 16 nodes (4 rows and 4 columns).

We finish the section with a note on the number of exchanged messages (number of transmissions).
For every iteration p of Algorithm 1, the number of exchanged messages per node was at most 5t0,
divided as follows: t0 message exchanges were required for lines 8 and 9, another 2t0 message
exchanges were needed in line 10 (lines 14 and 15 did not require new message exchanges), and line
16 required another t0 message exchanges. Finally, depending on the if-clause, another t0 message
exchanges were required in line 21. Therefore, the overall number of required transmissions per node
was between 4pmaxt0 and 5pmaxt0.

5. Conclusions

In this paper we have provided an algorithm for the in-network computation of the optimal
weighting matrix for distributed consensus. The algorithm can be viewed as an iterative repetition
of, at most, five distributed consensus operations. Our algorithm is especially useful for networks
that do not have a central entity and that change with time. In fact, if a network never changes with
time (and its topology is known a priori), it seems easier to solve the FSDLA problem offline (in a
centralized rather than a distributed way) using [6], and then pre-configuring the nodes with the
obtained weights. However, if the network topology changes randomly with time (e.g., if sensors
are added or removed) and there is no central entity, our algorithm would so far be the only way of
obtaining the optimal solution to the FSDLA problem.
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