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Abstract
Purpose To study the association between ultrasound cortical thickness in reactive post-vaccination lymph nodes and the 
elicited humoral response and to evaluate the performance of cortical thickness as a predictor of vaccine effectiveness in 
patients with and without a previous history of COVID-19 infection.
Methods A total of 156 healthy volunteers were recruited and followed prospectively after receiving two COVID-19 vac-
cination doses using different protocols. Within a week after receiving the second dose, an axillary ultrasound of the ipsilat-
eral vaccinated arm was performed, and serial post-vaccination serologic tests (PVST) were collected. Maximum cortical 
thickness was chosen as a nodal feature to analyze association with humoral immunity. Total antibodies quantified during 
consecutive PVST in previously-infected patients and in coronavirus-naïve volunteers were compared (Mann–Whitney U 
test). The association between hyperplastic-reactive lymph nodes and effective humoral response was studied (odds ratio). 
The performance of cortical thickness in detecting vaccination effectiveness was evaluated (area under the ROC curve).
Results Significantly higher values for total antibodies were observed in volunteers with a previous history of COVID-19 
infection (p < 0.001). The odds ratio associating immunized coronavirus-naïve volunteers after 90 and 180 days of the second 
dose with a cortical thickness ≥ 3 mm was statistically significant (95% CI 1.52–6.97 and 95% CI 1.47–7.29, respectively). 
The best AUC result was obtained comparing antibody secretion of coronavirus-naïve volunteers at 180 days (0.738).
Conclusions Ultrasound cortical thickness of reactive lymph nodes in coronavirus-naïve patients may reflect antibody pro-
duction and a long-term effective humoral response elicited by vaccination.
Clinical relevance statement In coronavirus-naïve patients, ultrasound cortical thickness of post-vaccination reactive lym-
phadenopathy shows a positive association with protective antibody titers against SARS-CoV-2, especially in the long term, 
providing new insights into previous publications.
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Key Points 
• Hyperplastic lymphadenopathy was frequently observed after COVID-19 vaccination.
• Ultrasound cortical thickness of reactive post-vaccine lymph nodes may reflect a long-term effective humoral response in  
   coronavirus-naïve patients.
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Abbreviations
2019-nCOV  New coronavirus disease
APCs  Antigen-presenting cells
AUC   Area under a receiver operating  

characteristic (ROC) Curve
COVID-19  Coronavirus disease 2019
FDA  Food and Drug Administration
mRNA  Messenger ribonucleic acid
PVST  Post-vaccination serologic testing
SARS-CoV2  Severe acute respiratory syndrome 

coronavirus
US  Ultrasound

Introduction

Coronavirus disease-19 (COVID-19) is an ongoing global 
pandemic caused by the 2019 novel coronavirus (2019-
nCoV), also known as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). It was first detected in the 
Chinese city of Wuhan in early December 2019, after the 
notification of numerous cases of atypical pneumonia. 
Only 1 month later, COVID-19 spread quickly world-
wide, and the World Health Organization (WHO) declared 
it a public health emergency of international concern 
(PHEIC). On March 2020, it was declared a global pan-
demic. In consequence, multiple public health interven-
tions were implemented worldwide to decrease the trans-
mission of the virus and contain its spread.

After more than 2 years of the COVID-19 outbreak, 
the only measure guaranteeing virus control has been the 
implementation of broad vaccination programs. Different 
types of vaccines have obtained emergency use authoriza-
tions (EUA) from the US Food and Drug Administration 
(FDA) and the European Medical Agency (EMA), includ-
ing novel mRNA (Pfizer-BioNTech, Moderna) and viral 
vector-based (AstraZeneca, Janssen) vaccines. Addition-
ally, in June 2021, the WHO's Strategic Advisory Group of 
Experts on Vaccines approved “mix-and-match” or heter-
ologous COVID-19 vaccine protocols with an initial dose 
of AstraZeneca and a booster of Pfizer vaccine.

All COVID-19 vaccine platforms are administered 
intramuscularly but their mechanism of action differs: 
mRNA vaccines use the virus’s genetic material (RNA) 
during inoculation while viral vectors used modified 

versions of a different virus [1]. Their subsequent immune 
response is a complicated process necessitating several 
steps, many of which involve the lymphatic system [2]. 
Vaccine antigens are taken up by antigen-presenting cells 
(APCs) from the injection site to regional secondary lym-
phoid tissues, namely the lymph nodes, via lymphatic 
channels. Lymph nodes represent the activation center 
of the immune response, where vaccine-peptide antigens 
are presented by APCs to residing lymphocytes in order 
to elicit two main responses: cellular response, with the 
formation of cytotoxic T lymphocytes capable of directly 
killing infected cells, and a humoral response, which 
depends on B cells proliferation in the lymph node’s ger-
minal center (GC), resulting in the formation of matured 
memory B-cells and antibody-secreting long-lived plasma 
cells [3].

Therefore, widespread cases of reactive unilateral axil-
lary lymphadenopathy were reported after the introduc-
tion of the COVID-19 mass vaccination campaign [4–12]. 
While axillary and supraclavicular adenopathy ipsilateral 
to the injection site has also been documented after admin-
istration of other vaccines in the past [13–17], no data exist 
on the correlation between vaccination-associated reac-
tive lymphadenopathy and the elicited immune response 
to anti-SARS-CoV-2 vaccines. The aim of this study is to 
assess, in healthy adults, a potential association between 
the phenomenon of reactive hyperplastic lymphadenopathy 
identified on post-vaccination ultrasound and the humoral 
immunity revealed by serologic testing.

Material and methods

Study design

Between February and December 2021, 247 employees from 
our center, with no previous history of cancer, were recruited 
in this prospective observational single-center study. All 
volunteers gave written informed consent and the Ethical 
Committee of Clinical Research from our center approved 
the study protocol. Patients were included after receiving 
two doses of COVID-19 vaccination with either Pfizer, Mod-
erna, AstraZeneca, or a mix-and-match COVID-19 vaccine 
protocol. The administration of both doses was performed 
in the same arm (preferably in the non-dominant arm). Of 
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these 247 participants, 156 underwent serologic testing fol-
lowing the second vaccine dose with a median time interval 
between the booster vaccine dose and serology testing of 21, 
90, and 180 days. The vaccines administered, demographic 
data (age and sex), and prior history of COVID-19 infection, 
were recorded for all of them.

Ultrasound acquisition and data assessment

Ultrasounds were obtained using two different broad-band 
linear transducers with a band frequency of 8-13 MHz (Logic 
E9, GE Healthcare, and Aplio i800 series ultrasound system, 
Canon Medical Systems Corporation). All volunteers under-
went an axillary ultrasound (US) of the ipsilateral vaccinated 
arm within a week after the second dose. Ultrasound scans 
were performed by two third-year residents and two radiolo-
gists with more than 20 years of experience in breast imaging. 
Prior to participating in the study, the two third-year residents 
who took part in the research had completed their breast imag-
ing rotation. Additionally, they had conducted an observer 
training of axillary ultrasound performance with the two expert 
radiologists in order to perform US scans independently.

All axillary levels ipsilateral to the vaccine injection 
were evaluated and the following nodal imaging features 
were assessed: total number of visible lymph nodes, 
maximum measurements of long-axis size and cortical 
thickness, morphological Bedi’s classification, and color 
Doppler evaluation (Fig. 1). However, the variable used 
to analyze the association between morphologic changes 
in regional lymph nodes and antibody levels was only the 
maximum cortical thickness. All patients’ images, regard-
less of whether the examinations were performed by the 
two expert radiologists (67% of US scans) or by the two 
third-year residents (33% of US scans), were reviewed by 
the two radiologists with more than 20 years of experience 
in breast imaging, to reduce inter-observer variability and 
to select, in consensus, the appropriate cortical thickness 
measurement for each patient.

Humoral Response Evaluation

Anti-SARS-CoV-2 antibody detection was performed using 
two different commercial chemoluminescence tests. On the 
one hand, quantification of total antibodies (IgG+IgM) 
against the receptor binding domain (RBD) of SARS-
CoV-2 spike (S) protein was performed using Elecsys® 
Anti-SARS-CoV-2 S (Roche Diagnostics) test in the cobas 
e601 platform. On the other hand, the detection of total anti-
bodies (IgG+IgM) against viral nucleocapsid (Anti-N) was 
performed using Elecsys® Anti-SARS-CoV-2 test (Roche 
Diagnostics).

The package insert of Anti-S-RBD testing indicated that a 
quantification above 0.8 U/ml must be considered positive or 
reactive. Regarding Anti-S-RBD levels we used a threshold 
of 1000 U/mL. An Anti-S-RBD quantification below 1000 
U/mL, was considered a low (or non-protective) antibody 
level, and an Anti-S-RBD quantification of 1000 U/mL or 
more was considered a high (protective) antibody level. This 
interpretation was based on previous studies describing a 
waning in humoral immunity if levels detected for anti-S 
IgG were 1000 U/mL or less [18–20].

The package insert of Anti-N antibodies recommends 
a positive interpretation if the results are above 1.0 COI. 
However, according to previously reported studies [21], 
we selected 0.150 COI as a cut-off to improve the marker’s 
sensitivity.

Statistical analysis

Data collection was recorded in an EXCEL database 
(Microsoft). All statistical analyses were performed 
using SPSS Statistics Version 21 (IBM) and for all com-
parisons, a p value < 0.05 was considered statistically 
significant.

Categorical variables were reported as frequency and per-
centage. Continuous variables were evaluated for normal dis-
tribution and reported as the median and interquartile range 

Fig. 1  Enumeration of the five 
nodal imaging features assessed 
on ultrasound (total number 
of visible nodes, maximum 
measurement of long-axis size, 
maximum measurement of cor-
tical thickness, morphological 
Bedi’s classification, and color 
Doppler evaluation). US image 
illustrating how the three objec-
tive parameters recorded in the 
study were performed
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(IQR). Assessment of gender, age, and vaccine protocol 
administered between coronavirus-naïve volunteers and pre-
viously infected patients was performed using Fisher’s exact 
test, Mann–Whitney U test, and chi-square test, respectively. 
Additionally, a Mann–Whitney U test was also applied to 
compare serial antibody titers obtained 21, 90, and 180 days 
from the second vaccine dose between both groups. An odds 
ratio test was performed to investigate the association between 
hyperplastic cortical thickness (≥ 3 mm) and effective humoral 
immune response (IgG+IgM ≥ 1000 U/mL) with the same 
subgroup analyses.

Finally, the area under the ROC curve (AUC) was cal-
culated to evaluate the performance of the cortical thick-
ness to detect the effectiveness of COVID-19 vaccines over 
time. Areas under the curve (AUC) were constructed by 
calculating the sensitivities (true positive rate) and specifi-
cities (false positive rate) of the cortical thickness at sev-
eral cut-off points considering antibody levels ≥ 1000 U/
mL as protective. “The best cut-off” points were selected 
taking two elements into account: a cortical thickness 
slightly above 3 mm and a discreetly higher sensitivity to 
specificity. Our objective was to study the presence of high 
(protective) Anti-S IgG levels. Therefore, we prioritized 
the sensitivity of the algorithm while preserving adequate 
specificity.

Results

Patient characteristics

Out of 247 included volunteers who fulfilled the inclu-
sion criteria, serial serological tests were performed for 
156 individuals. Demographic data analysis (n=156) 
showed an average age of 44.01 ± 11.56 (range 20–65 
years) and a large percentage of women (91.7%). 
According to the COVID-19 vaccine protocols adminis-
tered, subjects were divided into four groups: recipients 
of the Pfizer (45; 28.8%), Moderna (28; 17.9%), Astra-
Zeneca (60; 38.5%) vaccines or mix-and-match COVID 
vaccination (23; 14.7%). No significant differences were 
seen when comparing the gender and the mean age of 
patients between coronavirus-naïve volunteers and previ-
ously infected patients. However, comparative analyses 
of vaccine protocols between coronavirus-naïve vol-
unteers and previously infected patients showed a sta-
tistically significant difference because almost all the 
convalescent volunteers were vaccinated with the Pfizer 
vaccine (Table 1). Total antibody levels of recruited 
patients are summarized in Table 2, which also includes 
analysis by subgroups.

Vaccine‑associated cortical nodal thickness 
and post‑vaccination antibody secretion

To study the association between the cortical thickness of 
axillary lymph nodes (exposure) and the humoral response 
quantified by PVST (outcome), we defined lymph nodes 
showing a cortical thickness greater than 3 mm as morpho-
logically reactive lymphadenopathy, and a total antibody 
(IgG+IgM) quantification equal or greater than 1000 U/mL 
as a protective serologic level. The odds of effective humoral 
response could not be calculated in the subgroup of previ-
ously infected patients because of the small sample. However, 
in coronavirus naïve volunteers, we found statistically sig-
nificant odds of effective humoral response at 90 days (3.25, 
95% CI 1.52–6.97) and at 180 days (3.28, 95% CI 1.47–7.29).

Receiver operating characteristic curves analysis

Areas under the curve (AUC) in convalescent volunteers sug-
gest that cortical thickness holds no diagnostic ability in this 
subgroup (AUC < 0.50). Regarding the coronavirus-naïve 
volunteers’ subgroup, the higher AUC value was obtained 
comparing antibody secretion of coronavirus-naïve volun-
teers at 180 days (AUC = 0.738) with a cortical thickness of 
3.55 mm as the best cut-off point with a sensitivity of 73.8% 
and a specificity of 63.5%. This was followed by antibody 
secretion of coronavirus-naïve volunteers at 90 days (AUC = 
0.713) with a cortical thickness of 3.35 mm as the best cut-off 
point with a sensitivity of 72.5% and a specificity of 65.2% 
(Fig. 2); and finally, by antibody secretion of coronavirus-
naïve volunteers at 21 days (AUC = 0.670) with a cortical 
thickness of 3.35 mm as the best cut-off point with a sensi-
tivity of 63.3% and a specificity of 64.7% (AUC = 0.670).

Discussion

Ever since the rollout of vaccination programs to the entire 
population, widespread cases of hyperplastic lymph nodes 
have been reported as ipsilateral to the injection site. How-
ever, the association between lymphadenopathy induced 
by COVID-19 vaccinations and immune response elicited 
remains unknown. This is the first prospective study that 
examined the association between cortical morphologic 
features of reactive axillary lymph nodes and SARS-CoV-2 
antibody levels in healthy patients, adding new insights into 
this clinical pandemic-era conundrum.

All patients recruited in our prospective cohort were 
employees from our center and, after requesting their writ-
ten consent, we were allowed to access their personal medical 
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history. No rheumatological or oncological diseases were 
present at the time of their inclusion in the study or during 
their follow-up period, and they were therefore considered 
healthy volunteers. In the study, women represented the larg-
est percentage of the sample (92%) due to a higher proportion 
of female employees in the health care and social sector [22]. 
The mean age of recruited patients was similar to the mean 
age of the population in our country (44 years old) [23].

Ultrasound examination was obtained from the axil-
lary region ipsilateral to the vaccine injection, including the 
three axillary levels. In our experience, the most frequently 
hyperplastic reported lymph nodes were located below the 
lower edge of the pectoralis minor muscle (level I), so this 
region was more carefully evaluated. The five ultrasound 

nodal characteristics described in the design of the study were 
assessed for each visible node in all volunteers. However, the 
nodal feature chosen to establish an association with antibody 
levels was the maximum value detected of cortical thickness. 
This variable is the most relevant clinical-radiological factor, 
and it is a quantitative measurement with more objectivity and 
reproducibility as well as an easier statistical assessment. So, 
regardless of whether a lymph node presented a diffuse and 
symmetric cortical thickness greater than or equal to 3 mm 
(type Bedi 3), a generalized lobulated cortical thickening (type 
Bedi 4), or a focal cortical lobulation (type Bedi 5), we chose 
its maximum cortical value (measured in millimeters) (Fig. 3).

Before studying the association between the maximum 
cortical thickness of reactive lymphadenopathy and the 

Table 1  Details of sample. Categorical variables are reported as frequency and percentage; Continuous variables are reported as mean ± stand-
ard deviation (SD)

Values highlighted in bold are statistically significant (value inferior to 0.001)

Total number of recipients with 
serology testing (n = 156)

Coronavirus-naïve volun-
teers (n = 137)

Convalescent volunteers  
(n = 19)

p value

Gender (men/women) 13/143 (8.3%/91.7%) 10/127 (11.2%/ 88.8%) 3/16 (15.8%/84.2%)    0.198
Age y/o (mean ± SD) 44.01 ± 11.56 43.96 ± 11.41 44.32 ± 12.92    0.871
Vaccine protocol < 0.001
Pfizer-Pfizer 45 (28.8%) 28 (20.44%) 17 (89.47%)
Moderna-Moderna 28 (17.9%) 28 (20.44%) 0
AstraZeneca-AstraZeneca 60 (38.5%) 58 (42.34%) 2 (10.53%)
AstraZeneca-Pfizer 23 (14.7%) 23 (16.78%) 0

Table 2  Comparison of median ± interquartile range (IQR) values for total antibody levels collected 21, 90, and 180 days from second booster 
dose between the three different vaccine protocols

Values highlighted in bold are statistically significant (value inferior to 0.001)

Total number of recipients with 
serology testing (n = 156)

Coronavirus-naïve vol-
unteers (n = 137)

Convalescent volunteers  
(n = 19)

p value

Total antibodies 21 days from Vac-2 3546 ± 6608 3189 ± 4129 17933 ± 18055 < 0.001
mRNA (Pfizer-BioNTech, Moderna) 4630 ± 6474.5 3595.5 ± 3446 20334 ± 16484.5
Viral vector-based  

(AstraZeneca-AstraZeneca)
2402.5 ± 1834 2377 ± 1820.5 3178 ± 736

Mix-and-match (AstraZeneca-Pfizer) 16340 ± 13614 16340 ± 13614 -
Total antibodies 90 days from Vac-2 1831 ± 2992.7 1413 ± 2210 8228 ± 8370 < 0.001
mRNA (Pfizer-BioNTech, Moderna) 2520 ± 3217 2263.5 ± 1793 9230 ± 18232
Viral vector-based
(AstraZeneca-AstraZeneca)

790.1 ± 776.5 785.6 ± 727.8 ± 43

Mix-and-match
(AstraZeneca-Pfizer)

3762 ± 3546 3762 ± 3546 -

Total antibodies 180 days from Vac-2 1006 ± 1368.8 899.5 ± 1172.1 3342.5 ± 3766.3 < 0.001
mRNA
(Pfizer-BioNTech, Moderna)

1403 ± 1624 1163 ± 747.7 3900 ± 3848.5

Viral vector-based
(AstraZeneca-AstraZeneca)

389.3 ± 418.3 378.4 ± 431.1 656.7

Mix-and-match
(AstraZeneca-Pfizer)

1524 ± 1229.6 1524 ± 1229.6 -
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quantification of total antibodies, we avoided the possible 
effect of a previous history of COVID-19 disease in the 
humoral immune response by dividing the sample into two 
subgroups: coronavirus-naïve volunteers and previously 
infected patients. We had two strategies to detect incident 
cases of COVID-19 among our participants: one, based on 
information from their clinical record when results of PCR or 
antigen detection were available and, the second one, based 
on serological follow-up every 1–3 months. The sequential 

post-vaccination serologic tests (PVST) performed included 
the detection of antibodies against both the spike (Anti-S) and 
the nucleocapsid (Anti-N). All COVID-19 vaccine platforms 
induce spike protein-specific neutralizing antibodies (Anti-
S). However, antibodies against the nucleocapsid (Anti-N) 
are only generated by natural infection, so their detection 
in patients (using a cut-off of 0.150) allowed us to diagnose 
additional COVID-19 cases not detected by direct testing.

Fig. 3  Comparative US images and sequential PSVT results from 
examples of vaccine recipients with different vaccination protocols. a 
A maximum cortical thickness of 4.5 mm in a type Bedi 4 node seen 
in a volunteer vaccinated with Moderna m-RNA protocol. b A maxi-

mum cortical thickness of 3 mm in a type Bedi 3 node detected in a 
volunteer vaccinated with viral vector-based protocol. c A large maxi-
mum cortical thickness of 10 mm with absent hilum in a type Bedi 6 
node seen in a volunteer after receiving the mix-and-match protocol

Fig. 2  a ROC curve for coronavirus-naïve volunteers at 180 days with 
a cortical thickness of 3.55 mm as the best cut-off point with a sensi-
tivity of 73.8% and a specificity of 63.5%. b ROC curve for corona-

virus-naïve volunteers at 90 days with a cortical thickness cut-off of 
3.55 with a sensitivity of 72.5% and a specificity of 65.2%.
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Data analysis confirmed statistically higher SARS-CoV-2 
IgG antibody levels in individuals previously diagnosed with 
COVID-19, regardless of the vaccine type used. When com-
paring the immune response between different vaccine pro-
tocols in both groups, we detected higher levels of antibody 
levels in patients vaccinated with the mix-and-match protocol. 
This is true for measurements conducted at 21 days, however, 
differences between the mRNA protocol and the mix-and-
match protocol seem less dramatic at 90 days and at 180 days.

To evaluate the association between post-vaccine lymphad-
enopathy and the effectiveness of the COVID-19 vaccine over 
time, we defined lymph nodes with a cortical thickness greater 
than 3 mm as morphological reactive because, following 
Bedi’s classification, this value supposes the change between 
normal lymph node appearance (Bedi’s grade 1 and 2) to a 
suspicious/reactive lymph node appearance (Bedi’s grade 3, 4, 
5 and 6). Normally, this classification is used as a way to objec-
tively classify the appearance of lymph nodes in oncologic 
staging and the likelihood of malignancy increases with each 
morphologic type [24]. However, due to the lack of malignant 
risk factors in our cohort, axillary lymph nodes showing large 
cortical thickness were regarded as physiologic, reactive post-
vaccine lymph nodes.

It was possible to calculate the odds of effective humoral 
response in the subgroup of coronavirus naïve volunteers and 
statistically significant odds of effective humoral response 
were found at 90 and 180 days. The fact that the germinal-
center (GC) is located in the nodal cortex [25] could explain 
why cortical thickness developed in post-vaccine lymphad-
enitis may be the morphological evidence that suggests a 
more robust B cell germinal-center (GC) response elicited 
by COVID-19 vaccines. This feature may also indicate a 
more effective humoral response and a higher likelihood of 
antibody production, especially at 90 and 180 days.

Areas under the curve (AUC) in convalescent volunteers sug-
gest that cortical thickness holds no diagnostic capacity in this 
subgroup. This result could be explained by previously pub-
lished results, which showed a less significant axillary lymph 
node response to vaccination in patients who were previously 
infected by SARS-CoV-2 [26]. Regarding the subgroup of cor-
onavirus-naïve patients, the higher AUC value was obtained by 
analyzing antibody secretion of coronavirus-naïve volunteers 
at 180 days with acceptable discrimination (AUC = 0.738), fol-
lowed by antibody secretion of coronavirus-naïve volunteers at 
90 days (AUC = 0.713). In both analyses, the best cut-off point 
was determined to be at a cortical thickness greater than 3 mm, 
in line with our previous explanations of cortical thickness asso-
ciated with reactive post-vaccine lymphadenopathy. According 
to these results, we can conclude that the presence of draining 
lymph nodes with cortical thickness greater than 3 mm is use-
ful in detecting the effectiveness of the COVID-19 vaccine over 
time, especially, at 180 days.

The findings in this report are subject to some limitations. 
Firstly, the immunity to SARS-CoV-2 is likely both humoral 
and cellular, and this second aspect of response one was not 
analyzed. Secondly, the selection of healthy employees from 
our center as the target population eliminated the possibil-
ity to report nodal feature changes in extreme ages (sample 
selection bias) and in individuals with immunocompromising 
conditions. Thirdly, the small number of volunteers receiving 
each vaccine protocol does not allow investigating by sub-
classes. Furthermore, we did not study other nodal locations. 
Finally, the absence of a baseline axillary ultrasound of vac-
cine recipients prior to vaccination eliminated the possibility 
in this study of reporting an induced cortical thickness from 
a baseline. On the other hand, the scientific rigor of these 
results is enhanced by its prospective design and the partici-
pants’ very high adherence to serial serologic testing.

In conclusion, the key findings of our study include (1) the 
positive association between the cortical thickness of draining 
lymph nodes after vaccination and protective antibody titers 
against SARS-CoV-2 in coronavirus-naïve patients (especially 
in the long term), and (2) an adequate discrimination capacity of 
a cortical thickness greater than 3 mm in predicting post-vacci-
nation effective humoral response. These findings provide new 
insights into previous publications on the relationship between 
ultrasound features of post-vaccination lymphadenopathy in the 
context of COVID-19 and inspire further investigations.
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thy and the elicited humoral response and to evaluate the performance 
of cortical thickness as a predictor of vaccine effectiveness in patients 
with and without previous history of COVID-19 infection.

Methodology  
• prospective
• observational study
• performed at one institution
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