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Abstract

Numerous problems encountered in computational biology can be formulated as optimiza-

tion problems. In this context, optimization of drug release characteristics or dosing sched-

ules for anticancer agents has become a prominent area not only for the development of

new drugs, but also for established drugs. However, in complex systems, optimization of

drug exposure is not a trivial task and cannot be efficiently addressed through trial-error

simulation exercises. Finding a solution to those problems is a challenging task which

requires more advanced strategies like optimal control theory. In this work, we perform an

optimal control analysis on a previously developed computational model for the testosterone

effects of triptorelin in prostate cancer patients with the goal of finding optimal drug-release

characteristics. We demonstrate how numerical control optimization of non-linear models

can be used to find better therapeutic approaches in order to improve the final outcome of

the patients.

Author summary

Mathematical models of the disease processes are widely used in computational biology to

quantitatively describe the time course of disease progression and are often linked to phar-

macokinetic–pharmacodynamic models in order to evaluate the effect of drug treatment

on disease. Once the models are built from observed information and/or literature data,

they can predict the dynamics of the system under different conditions through computer

simulations. However, simulation exercises are not always effective to obtain the desired

objectives due to the complexity of these systems. In this work, we optimized the release

characteristics of a synthetic gonadotropin-releasing hormone analog used to induce

chemical castration by inhibiting the testosterone levels in prostate cancer patients. The
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therapeutic goals to achieve were to minimize the initial flare up of testosterone levels and

the time to reach testosterone values below castration limit, while maximizing the castra-

tion period of the patients. Our methodology, based on control theory, introduces a

manipulable variable into the system’s equations to drive the model towards the estab-

lished goals. We demonstrated how drug-release properties can be improved with the

implementation of optimal control strategies to enhance the outcome of cancer patients.

These methods are extrapolable to other problems encountered in the field.

Introduction

Optimizing delivery systems targeting constant levels of drug concentration represents always

a challenge for chronic diseases requiring continuous treatment and especially in those cases

where the relationship between drug exposure (represented generally as levels of drug concen-

tration plasma measured longitudinally) and pharmacological response is complex and non-

linear. The management of prostate cancer with sustained release formulations of triptorelin

(TRP) injected every 3-6 months represents a good example [1].

For the case of the hormone-sensitive prostate tumors the therapeutic goal of any pharma-

cology treatment is to maintain as longer as possible the levels of testosterone (TST) below the

castration limit (CT) which is set to the plasma concentration value of 0.5 ng/mL [2].

In recent past, we have developed a mechanistic computational model for the TST effects

of the agonist TRP in prostate cancer patients using longitudinal pharmacokinetic (PK;

drug concentration in plasma) and pharmacodynamics (PD; TST concentrations in plasma)

data obtained from several clinical trials testing the efficacy of different sustained-release

formulations (SR) [3]. Briefly, TRP exerts its action by increasing the fraction of activated

receptors and therefore stimulating the production of TST. However, the prolonged expo-

sure of TRP causes receptor down-regulation, resulting in a reduced synthesis of TST. The

typical TST vs time profile after a single injection of TRP is represented in Fig 1. The sche-

matic representation of the PKPD model developed for TST effects of TRP, excluding the

Fig 1. Typical testosterone profile after administration of triptorelin. TSTmax refers to the maximal testosterone

concentrations, tcast indicates the time where testosterone levels fall below 0.5ng/ml (castration limit of prostate cancer

patients, marked with an horizontal dashed line in the figure) and teffect indicates the castration period of the patients.

https://doi.org/10.1371/journal.pcbi.1006087.g001
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absorption compartments of the original model, and the estimates of model parameters are

shown in Fig 2.

As highlighted in Fig 1 there are three critical aspects to be taken into consideration at the

time to develop an innovative delivery system of TRP for the treatment of prostate cancer: ini-

tial flare up, time to reach CT, and castration period. Ideally, such new formulation should

release TRP at a rate eliciting levels of concentration in plasma minimizing both the initial

flare up and the time to reach CT, as well as maximizing the castration period. Specifically, lim-

itation in the TST flare-up (TSTmax) to 50% increase with respect to baseline, minimize time

to castration after first injection (tcast) to values below 3 weeks, and extend the castration time

after injection (teffect) for at least 9 months.

Given the complex relationship between concentrations of TRP in plasma and response as

represented in Figs 1 and 2, together with the requisite of maintaining the TST profiles within

the constraints mentioned above, optimization of the rate of drug release is not a trivial task

and cannot be efficiently addressed through an extensive trial & error simulation exercise.

In the current work we aimed to optimize the release profile of TRP from SR formulations

matching the multi-objective therapeutic needs applying optimal control methodology [4].

The rationale behind the decision of focusing on the release process is based on the assumption

that once the drug is absorbed and reaches systemic circulation (represented as part of the cen-

tral compartment in Fig 2) it follows the same distribution and elimination characteristics

Fig 2. Schematic representation of the state variables and control input for the pharmakinetic-pharmacodynamic model of the testosterone

effects of Triptorelin (left) and model parameter estimates (right). CTRP, serum concentrations of Triptorelin; CL, apparent total clearance; Vc, VT1,

and VT2, apparent volumes of distribution of the central, shallow, and deep peripheral compartments, respectively; CLD1 and CLD2, distribution

clearances between the central and peripheral compartments; RT, total receptors; RT0
, total receptors at baseline; TST0, baseline testosterone level; KD,

receptor equilibrium dissociation constant of triptorelin; DR, down-regulation process; DR_50, the value that elicits a 50% maximal reduction in kS_R for

a given amount of total receptors; kS_R, zero-order rate constants of receptor synthesis; kD_R, first-order rate constants of degradation; kS_R, zero-order

rate constants of testosterone synthesis; kD_T, first-order rate constants of testosterone degradation; kin, zero-order rate production of testosterone

independent from gonadotropins; AGN, ratio between the endogenous agonist concentration and its receptor equilibrium dissociation constant; FDB,

feedback.

https://doi.org/10.1371/journal.pcbi.1006087.g002
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regardless the type of formulation administered. The same is assumed with respect to the TST

response, the rate of synthesis and degradation of TST and receptors, the dynamics of receptor

occupation, and the down-regulation process. These mechanisms are independent from the

absorption properties of the drug.

Despite we focused on a specific case, the workflow and methodology used can be readily

translate to other therapeutic areas and scenarios such as dosing schedule optimization and

personalized treatments.

Materials and methods

Having defined the therapeutic goals of the project, the analysis was divided in several steps: i)

a population of virtual subjects were generated in order to have a representative population of

the study; ii) the optimal TST profiles for each virtual patient were derived by means of optimal

control methods; and finally iii) the empirical absorption profiles obtained in step ii were char-

acterized using parametric models to assist biopharmaceutics at the time to develop and evalu-

ate new SR formulations of triptorelin. A schematic representation of the workflow is given in

Fig 3.

Generation of a virtual patient population

Values listed in the table inserted in Fig 2 include estimates of typical population parameters

and between-subject variability (represented by BSV in the table and hereafter) obtained from

[3] for a set of model parameters. In order to obtain the population of virtual patients, parame-

ters were modelled as Pi ¼ Ppop � eZi P , where Pi and Ppop represent the ith individual and typi-

cal population values of the P parameter, respectively, and ηi_P corresponds the deviation of Pi

with respect the typical value Ppop; the set of individual ηi_P forms a random variable with

mean value of 0 and variance o2
P following a normal distribution, whereas the distribution of

individual parameters is log-normal. The magnitude of o2
P reflects the BSV associated to a spe-

cific model parameter, which in Fig 2 is expressed as coefficient of variation (CV%).

One thousand set of disposition (clearance and volume of distribution in the central

compartment, represented as CL and Vc respectively), pharmacodynamics (receptor equilib-

rium dissociation constant of triptorelin (KD)) and system (baseline TST levels (TST0), zero-

Fig 3. Principal steps implemented in our methodology.

https://doi.org/10.1371/journal.pcbi.1006087.g003
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order rate of TST production independent from gonadotropins (kin), zero-order rate con-

stants of receptor synthesis (kS_R) and the value that elicits a 50% maximal reduction in

kS_R for a given amount of total receptors (DR_50)) related parameters were generated

using the typical population estimates and corresponding marginal distributions reported

in the table of Fig 2. The parameter values for the virtual population were generated with

NONMEM 7.2 [5].

Optimal control

An optimal control problem is a dynamic optimization problem in which the state of a system

is linked in time to the application of a control function u(t), which drives the system towards

a desirable outcome by minimizing a cost function J(u) subject to operating constraints [4, 6].

In other words, the control variable u(t) forces a system to have an optimal performance. The

concrete control strategy will depend upon the criterion used to decide what is meant by “opti-

mal”; in the current case TSTmax < 1.5 � TST0 ng/ml, minimize tcast� 3 weeks, and maximize

teffect� 9 months.

Therefore any optimal control problem can be formulated to find the magnitude of u(t)
over the time of study [from initial time t0 to final time tf] such that:

min
uðtÞ

JðuÞ ¼ �½xðtf Þ� þ

Z tf

t0

L½xðtÞ; uðtÞ�dt

subject to
dxðtÞ

dt
¼ f ðxðtÞ; uðtÞ; tÞ

xðt0Þ ¼ x0;

hðxðtÞ; uðtÞÞ ¼ 0;

gðxðtÞ; uðtÞÞ � 0;

ð1Þ

where J(u) is the cost function, u(t) is the control variable; x(t) the vector of state variables;

x0 the set of initial conditions of the state variables; h() the equality constraints; and g() the

inequality constraints. The general form of the equation in J(u) is known as Bolza optimization

problem [7], which is represented as the sum of a terminal cost functional (Mayer problem)

and an integral function of the state and control from t0 to tf (Lagrange problem). For a more

detailed information see S1 Text.

Fig 2 shows a schematic representation of the state variables and control input defined in

this work. The state system is characterized by the variables that predict serum concentrations

of triptorelin (CTRP), concentrations of triptorelin in the shallow and deep peripheral compart-

ments (C1 and C2 respectively), drug input profile (D), amount of total receptors (RT), and

optimal testosterone levels (TST), each of them represented by the corresponding ordinary dif-

ferential equation as shown in Table 1. Note that in Fig 2 the terms resembling the 0th and 1st

order absorption processes have been removed from the original model structure from [3] and

have been replaced by the new control variable u(t). Therefore the expression associated to the

rate of change of the levels of TRP in plasma ( _CTRPðtÞ) is:

_CTRP ¼ uðtÞ þ
CLD1

VT1

� c1ðtÞ þ
CLD2

VT2

� c2ðtÞ �
CLD1

Vc
� CTRPðtÞ

�
CLD2

Vc
� CTRPðtÞ �

CL
Vc
� CTRPðtÞ

ð2Þ
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An additional compartment D was defined, where the dose of TRP administered to the

patients (10mg in this evaluation exercise) was placed as initial condition (D0). The control

variable u(t) leaves this compartment and enters to the central (systemic) compartment of

TRP as follows:

_D ¼ � uðtÞ ð3Þ

Recall that, u(t) (ng/day) does not represent any particular mechanism of absorption (i.e., zero

and/or first order kinetics), but a vector of different values that influence the system to behave

in a pre-determined (optimal) way.

The aim of this work was to find the time profile of u(t) (input function of TRP into the cen-

tral compartment) that minimizes an objective (or cost) function and satisfies all constraints

which represent the boundaries and therapeutic goals to be achieved (see Table 1). The choice

of an objective function represents a critical aspect in optimal control problems [8]. Here, the

problem is divided into two phases each represented by a different cost function and defined

between: (i) 0 and tcast, and (ii) tcast and� 280 + tcast days, respectively.

Table 1. Summary of the setup of the different components of the optimal control problem.

Phase I, t 2 [0, tcast] Phase II, t 2 [tcast,280+tcast]

Cost function JI(u) = tcast JIIðuÞ ¼
R 280þtcast

tcast
TSTðtÞ2dt

State variables subject to:

_D ¼ � uðtÞ
_C1 ¼ �

CLD1

VT1
� c1ðtÞ þ

CLD1

Vc
� CTRPðtÞ

_C2 ¼ �
CLD2

VT2
� c2ðtÞ þ

CLD2

Vc
� CTRPðtÞ

_CTRP ¼ uðtÞ þ CLD1

VT1
� c1ðtÞ þ

CLD2

VT2
� c2ðtÞ �

CLD1

Vc
� CTRPðtÞ �

CLD2

Vc
� CTRPðtÞ � CL

Vc
�

CTRPðtÞ
_RT ¼ kS RðDR � FDBÞ � kD R � RTðtÞ

_TST ¼ kS T
AGNþBGN

1þAGNþBGN � RTðtÞ
� �

þ kin � kD T � TSTðtÞ

Initial conditions

D
I
ðt0Þ ¼ Dose D

II
ðt0Þ ¼ D

I
ðtcastÞ

C1I
ðt0Þ ¼ 0 C1II

ðt0Þ ¼ C1I
ðtcastÞ

C2I
ðt0Þ ¼ 0 C2II

ðt0Þ ¼ C2I
ðtcastÞ

CTRPI
ðt0Þ ¼ 0 CTRPII

ðt0Þ ¼ CTRPI
ðtcastÞ

RTI
ðt0Þ ¼ 1 RTII

ðt0Þ ¼ RTI
ðtcastÞ

TST
I
ðt0Þ ¼ TST0 TST

II
ðt0Þ ¼ TST

I
ðtcastÞ

Inequality constraints

(Boundaries)

D 2 [0, Dose]

TST
I
2 ½0:5; 1:5 � TST0� TST

II
2 ½0; 0:5�

Equality constraints

TST
I
ðt ¼ tcastÞ � 0:5 ¼ 0

where BGN¼ CTRP
KD

, FDB ¼ RT
RT 0
� 2 �

RT
RT0

� �
, RT0

= 1, DR ¼
DR 50

DR 50þ
AGNþBGN

1þAGNþBGN�
AGN

1þAGNð Þ
, Dose = 10mg and t0 makes reference

to the initial time. The rest of the parameters have been already defined in Fig 2. The subscript I and II in the model

parameters refers to the first and second phase respectively.

https://doi.org/10.1371/journal.pcbi.1006087.t001

Optimal dynamic control approach in a multi-objective therapeutic scenario

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006087 April 19, 2018 6 / 16

https://doi.org/10.1371/journal.pcbi.1006087.t001
https://doi.org/10.1371/journal.pcbi.1006087


During the first phase (from 0 to tcast) the u(t) profile is optimized to transfer the system

from an initial state TST0(baseline testosterone level) to the final state of 0.5ng/ml (CT value)

in the shortest possible time. To solve the first phase of the optimization problem, the follow-

ing objective function and equality constraint were defined respectively:

JIðuÞ ¼ tcast ð4Þ

TSTðt ¼ tcastÞ � 0:5 ¼ 0 ð5Þ

where tcast is an static control variable for minimizing JI. Here, we wished to obtain the mini-

mum value of tcast that causes TST levels to achieve the CT value. The final time tcast was not

known in advance, and that is the reason why the optimization problem was divided into two

different phases.

Additionally, an inequality constraint was added to limit the initial flare-up of the testoster-

one below 50% increase with respect to baseline:

TSTðtÞ < 1:5 � TST0 ð6Þ

The second phase, covering the period between tcast and 280+tcast days, aims to maintain the

TST levels below CT. If a second objective function or constraints were not incorporated into

the optimization problem, values of TST rose above CT at times much earlier than 280 days.

The approach used to overcome the above mentioned undesired effect and maintain TST pre-

dictions within the therapeutic goal led to the minimization of a second objective function of

the form:

JIIðuÞ ¼
Z 280þtcast

tcast

TSTðtÞ2dt ð7Þ

The rationale for formulating JII using a quadratic function (TST(t)2) for minimizing testoster-

one levels, instead of TST(t), was because it offers relevant mathematical advantages in the

context of optimization problems. In optimal control theory, one of the main necessary

conditions for optimality is that control variables minimize a Hamiltonian function over u(t).
The Hamiltonian becomes convex if quadratic forms are used for the objectives and thus the

problem will have a unique minimizer [4]. See S1 Text for more information about the Hamil-

tonian matrix and the necessary and sufficient conditions for optimal control problems. Fur-

thermore, using squared terms amplify the effects of large variations and de-emphasize the

contributions of small fluctuations.

Continuity between the two phases of the optimization problem was ensured by imposing

the initial conditions of the state variables at phase II to be equal to their final values at the end

of the phase I (see Table 1).

Alternatively, other objective functions or constraints could have been defined. For exam-

ple, an alternative approach to model the second phase of the optimal control problem is to

only add the inequality constraint TST[tcast: (280 + tcast)] − 0.5 < 0, instead of a second objec-

tive function JII. This approach resulted in TST levels closer to CT compared to the values

obtained with the addition of JII. However, in the work from [1, 9] suggested that a CT value

lower than 0.2 ng/ml could be an even better target to maximize therapeutic outcomes of pros-

tate cancer patients. Due to these variations in the definition of the most appropriate CT value,

we prioritized the minimization of TST levels during the second phase using JII because we

obtained the lowest possible values of TST.

Table 1 summarizes the setup of the different components of the optimal control problem

described above. There exists different methods to solve this type of problems [10, 11]. In our

Optimal dynamic control approach in a multi-objective therapeutic scenario
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case, the dynamic optimization problem was solved numerically via direct methods with the

IPOPT Solver (Interior Point OPTimizer) [12] which is freely available in the APMonitor

Optimization Suite (http://apmonitor.com/) through MATLAB programming environment

[13]. The results were evaluated by calculating the proportion of individuals that achieved the

described therapeutic goals and constraints.

For more information about control theory see the works from [6, 8, 14] and for a more

comprehensive overview of the role of optimal control in cancer research read the reviews

from [4, 10, 15].

Mechanistic characterization of the optimal absorption profiles

During the optimal control exercise, values of TST in plasma were obtained approximately

every 12h for the first phase and every 120h in the second phase. Given the fact that the dispo-

sition, pharmacodynamics, and system parameters were already known as they were randomly

generated as described in Material and methods, the analyses of the TST profiles described in

this section focused on the mechanistic/parametric characterization of the absorption process

of TRP aiming to provide biopharmaceutics with metrics useful to guide the development of

new sustained release formulations. Those metrics are the fractions of the total dose injected

absorbed following 0th and 1st order processes, the cumulative drug release profiles over time,

the percentage of the dose that should remain in the site of injection at tcast and the time at

which the different absorption mechanism are activated.

The absorption model used to estimate the corresponding absorption parameters allowing

afterwards computation of metrics is represented in the work from [3] and comprises three

non-simultaneous absorption mechanisms, two of them following 1st order kinetics and the

third one following a 0th order process. This model is considered of a sufficient complexity to

deal with almost any absorption profile that can take place after administration of SR formula-

tions [16, 17]. A schematic representation of the structural model with the corresponding ordi-

nary differential equations is provided in S1 Fig.

The analyses were performed with the NONMEM version 7.2 software [5], following a two

stage approach in which the parameters of each subject are first obtained and summary statis-

tics (median, and 95th confidence intervals) are then calculated. BSV in the absorption param-

eters was modelled exponentially as described in section for the rest of model parameters. TST

concentrations obtained in step were logarithmically transformed for the analysis, and residual

variability was modeled by using an additive error model on log-transformed data.

Results

Optimal pharmacodynamic profiles

Fig 4 (blue points) illustrates the optimal testosterone profiles for the 1000 hypothetical indi-

viduals that we obtained after applying the optimal control problem formulated in Table 1.

The initial dose was considered to be 10mg. The code and data to reproduce these results in

MATLAB can be found in the S1 Data. All of them achieved the 3 quantitative therapeutic

goals (95% interval confidence between parenthesis) defined in the Introduction section: time

to castration was minimized to 18.96 days (11.408—36.289), the increase of TST levels at the

flare was always smaller than 50% with respect to baseline (36.8%-50.002%), and teffect was

greater than 280 for all the patients.

These profiles were generated with the manipulable variable u(t) which could take any val-

ues in order to minimize the multi-objective problem. However if we looked to the TRP con-

centration vs time profiles that induced the optimal TST levels (data not shown), those profiles

did not seem attainable by using simple first or zero order kinetics. That was the reason to

Optimal dynamic control approach in a multi-objective therapeutic scenario
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directly approximate the TST levels with the PKPD model presented by [3] and estimate the

most adequate absorption parameters.

Optimal release characteristics

The optimal release characteristics corresponding to the selected PKPD model from [3] are

listed in Table 2. The final model adequately described the optimal TST profiles calculated in

the previous section as shown in the individual profiles of Fig 5. A lag time was associated with

one absorption compartment. The first order rate constant of absorption of the second depot

compartment (KA2) had a very low median value (0.003 day−1), resulting in a slow decay of

Fig 4. Optimal testosterone (TST) profiles for 1000 simulated individuals. Solid circles represent optimal TST

observations obtained after the optimal control approach, solid line represent the median tendency of the data and red

dashed line indicates the castration limit (0.5ng/ml) of prostate cancer patients.

https://doi.org/10.1371/journal.pcbi.1006087.g004

Table 2. Population absorption parameters estimated for the optimal triptorelin profiles. The median values and

the 95% confidence intervals (CI%) are shown for a population of 1000 patients.

Parameter Estimate (CI%)

Dinf (day) 1.66 (-)

KA1(day−1) 0.25 (0.108-0.502)

KA2(day−1) 0.003 (0.0014-0.006)

F1 0.298 (0.067-0.6)

F2 0.664 (0.378-0.923)

Finf 0.039 (7.85e-05-0.07)

tlag (day) 3.3 (2.336-5.188)

where Dinf is the duration of the zero-order absorption process, KA1 and KA2 are the first order rate constants of the

first and second depot compartments respectively, F1, F2 and Finf represent the fraction of the drug associated with

the first and second depot compartments and the zero-order absorption process respectively, and tlag is the lag time

associated to the first absorption compartment.

https://doi.org/10.1371/journal.pcbi.1006087.t002
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TRP in serum concentrations. The first order rate constant of the first depot compartment

(KA1), instead, had a higher value (0.25 day−1) to allow for a rapid decay of the TST levels in

the firsts days of treatment. Table 2 also indicates that most of the drug is released following

1st order kinetics as the fraction of drug associated with the 0th order absorption process

(Finf) is very small (4%). This result is also reflected in Fig 6, where the median tendency of

Fig 5. Optimal testosterone profiles of the 1000 virtual patients. Optimal testosterone observations (solid circles)

with individual predictions (solid blue lines) of the pharmacokinetic/pharmacodynamic model and a red dashed line

indicating the castration limit (0.5ng/ml) of prostate cancer patients.

https://doi.org/10.1371/journal.pcbi.1006087.g005

Fig 6. Optimal drug release characteristics following each of the absorption mechanisms.

https://doi.org/10.1371/journal.pcbi.1006087.g006
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the drug release following each of the absorption mechanisms for the 1000 individuals is

shown. The values of the duration of the 0th order process (Dinf) varied immensely between

individuals (from hours to more than 200 days), thus the variability term was removed from

this parameter.

The therapeutic objectives obtained were compared to those from the optimal TST profiles

(Fig 7) and the 95% confidence intervals were also calculated from the 1000 samples. Minimal

time to achieve castration levels was 19.5 days (11.4-56.7) and the median percentage of drug

consumed until that moment was 38.9% (16.55%-66.96%). In Fig 7A the distribution of tcast

values for the 1000 individuals can be appreciated. With the modeling approach 63.9% of the

patients had a tcast smaller than 21 days, whereas in the optimal TST profiles this value was

equal to 70.7%. Regarding the second therapeutic goal, the initial peak in the TST levels had a

median of 55% (17%-75%) increase with respect to baseline. This indicated that the second

objective was not always achieved, contrary to the case of the TST profiles obtained by the opti-

mal control problem where the flare up was much more controlled (Fig 7B). Nonetheless, the

median value was very close to the optimal value of 50%, so we assumed that the modeling

approach managed to achieve the second therapeutic goal as well. Finally, the long-term cas-

tration had a median value of 351 days (235.9—708), which was higher than expected (Fig 7C),

Fig 7. Comparison of the three therapeutic objectives between the optimal control strategy (salmon) and the

pharmacokinetic/pharmacodynamic modeling approach (blue) for 1000 individuals. A) Distribution of tcast (time to

obtain testosterone levels below castration limit) values. B) Distribution of the values of the testosterone flare-up

(maximum testosterone level/baseline testosterone level). C) Distribution of tcast + teffect (castration time after injection

of the drug) time values of the modelling approach.

https://doi.org/10.1371/journal.pcbi.1006087.g007
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but we again needed to take into account that a small fraction of individuals (7.8%) did not

achieve a tcast + teffect above 9 months due to their specific physiological characteristics.

Discussion

In this paper, we have applied mathematical modeling and control theory to establish optimal

drug input (release) profiles to support the development of new release formulation of triptor-

elin aiming to improve patient coverage. Optimal control (OC) has a long and successful his-

tory of applications in engineering [8, 18] and economics [19, 20] but also has become an

important issue in biomedical research. Especially in clinical cancer research, a significant

amount of effort has been devoted to developing mathematical models to identify the most

effective chemotherapeutic administration regimens using OC methods [15, 21] and refer-

ences therein. One of the earliest studies where chemotherapy treatment planning was defined

as an OC problem was in the work from [22]. The authors applied OC to improve the treat-

ment administration of the bone cancer IgG multiple myeloma. Understanding the dynamics

of resistance mechanisms against chemotherapy and targeted drugs and emerging of adverse

effects represent challenges that have also been addressed through these techniques as shown

in the works from [23–26]. For example, in [24] the authors added the pharmacokinetics of

the drug in the OC problem in order to provide chemotherapeutic protocols in qualitative

terms. The injected drug concentration is used as the control variable and the minimization of

the number of tumor cells at the end of the treatment is defined as the cost function of the

problem. The results showed that the best strategy corresponds to the maximum rate of drug

injection when growth rate is assumed to be constant, but not in other type of models.

Combination of different active compounds, are the rule rather than the exception in oncol-

ogy and other therapeutic areas, but the potentially high number of different possible combi-

nations (including different dosing schemes), makes drug selection an unaffordable task from

an experimental trial and error perspective. Therefore any guide on how to administer these

therapies to achieve the best possible responses is of great potential as shown by [27, 28].

In the area of infectious diseases, the works from [29] and [30] showed that using treatment

regimens obtained from optimal control could lead to a substantial improvement in HIV

patients outcome in comparison to the administration of constant-dose standard regimens.

Anesthesia is another medical area where optimal control strategies are used to maintain

patient response within the desired therapeutic window for the case of the Bispectral Index

(BIS) as an indicator of sedation, or the degree of neuromuscular blockade [31, 32].

Despite the approach shown in the current evaluation is not novel in the drug delivery

arena, it has been seldom used beyond optimizing drug exposure. Especially in the context of

multi-objective optimization, the current example and others presented below indicate that

the optimal control approach should be considered part of the computational modeling arse-

nal advocated by the FDA promoted critical pathway initiative under the Model Informed

Drug Discovery and Development (MID3) paradigm [33].

Here we focused on the non-trivial problem of simultaneously achieving multiple therapeu-

tic goals related to drug onset and offset in the context of clinical trials with a minimum

duration of 9 months, which implies high cost and uncertainty regarding the final response

outcome. Therefore the possibility of providing to pharmaceutical technology scientists guid-

ance in the form of release/input (absorption) profiles represents a real added value to avoid

failed clinical studies. In this context we performed a reverse engineering exercise interpreting

the empirical input profiles from a mechanistic biopharmaceutic perspective and showing

the practical application of our optimal control analysis, encouraging cooperation between

computational and experimental/technology scientists.
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In the current exercise the majority of the system accounting for the relationship between

dose and response (drug disposition, receptor interaction, and down-regulation mechanisms)

was already well characterized with the corresponding typical values and associated variability

reported in [3]. In addition the subcutaneous route of administration represents a much sim-

pler biological system compared for example with the oral route. Therefore the optimal control

approach used here represents an appropriate choice even recognizing that in more complex

situations the advantages offered by similar approaches like non-linear model predictive con-

trol [13, 34] could represent a better alternative.

In this context, the main critical aspect of the analysis is the choice of the appropriate struc-

ture of the cost function to be minimized and the constraints of the problem. As highlighted in

Materials and methods section, we divided the problem into two phases because the minimum

time to achieve CT values (tcast) in TST levels was not known in advance. For the first phase,

we implemented the Mayer form of optimization problems whereas for the second phase a

Lagrange term was used (see Table 1). In this work, we focused on the resulting testosterone

levels of the prostate cancer patients, but, as shown in the above paragraphs of the Discussion,

for other therapeutic areas different objectives could have been established, like the minimiza-

tion of the tumor cell population at the end of treatment, the maximization of the number of

healthy immune system cells or the penalization of excessive application of therapeutic agents

[35–37].

The concept of optimization is present at every stage of the drug development process.

Optimal design methods, based on the D-optimality criteria which relies on the maximiza-

tion of the determinant of the Fisher information matrix [38, 39] is becoming also popular to

select the appropriate number of subjects in each cohort of the trials, the sampling times and

the number of dose levels [40]. However, we must not confuse optimal design methods with

optimal control techniques. The aim of the first is to simplify population trials but maintain-

ing the same efficiency as the original studies. There, they do not alter the system equations

nor the objective function of the algorithms and the focus is to search for similar results to

the original study (identical PKPD parameters, similar concentration vs time profiles. . .).

For example, in the work from [40], they used this method to optimize a population pharma-

codynamic experiment of the effect of ivabradine on exercise-induced tachycardia. On the

other side, in optimal control, we introduce what are known as control variables into the

model equations in order to manipulate the system response towards the desired goal. There-

fore, in this type of problems, system equations can be modified and objective functions and

constraints defined to search for improved solutions compared to the ones of the original

study. Still, both approaches have something in common; they avoid the use of intensive

computer simulations when the optimal solutions of a problem are being explored.

Conclusion

Optimal control theory has been applied to a population pharmacokinetic/pharmacodynamic

model to derive the optimal drug release profiles to achieve multiple therapeutic goals. The

optimal control analysis is more relevant in physiological systems with complex dynamics

where simple simulation tuning parameters exercises are not effective to obtain the optimal

profiles. Moreover, the flexibility of the method allows to deal with multiple and tight thera-

peutic objectives performing real optimization. In this context the question of how to define

the objective functions and how to quantify our therapeutic goals becomes crucial. Here, we

focused on the resulting testosterone levels of the patients, however, within the oncology area,

different therapeutic objectives can be established with the goal of improving drug combina-

tions, help to lessen the side effects of cancer treatments, etc.
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Finally, the optimal release characteristics have been described based on standard absorp-

tion PK models. Although there are some discrepancies between the resulting TST profiles

from the optimal control strategy and the modeling approach (see Results), we note that the

important aspect of this work was to find the optimal release characteristics for prostate cancer

patients, not to perform an ideal PKPD modeling exercise as there was not real data to fit. We

conclude that this objective is achieved and that the information summarized in this article

could be very useful for the development of new formulations, since it provides insight into

the desired absorption characteristics and could produce a broad benefit for future prostate

cancer patients.
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