
                             Editorial Manager(tm) for Multibody System Dynamics 
                                  Manuscript Draft 
 
 
Manuscript Number: MUBO-10-55R1 
 
Title: An optimization method for overdetermined kinematic problems formulated with natural 
coordinates 
 
Article Type: Original Research 
 
Keywords: Kinematic analysis; Motion reconstruction; Natural coordinates; Redundant constraint 
equations; Optimization 
 
Corresponding Author: Sergio Ausejo, PhD. 
 
Corresponding Author's Institution:  
 
First Author: Sergio Ausejo, PhD. 
 
Order of Authors: Sergio Ausejo, PhD.;Ángel Suescun, PhD.;Juan Celigüeta, PhD. 
 
Manuscript Region of Origin: SPAIN 
 
Abstract: In this paper, we present an optimization method for solving the nonlinear constrained 
optimization problem arising from a motion reconstruction problem formulated with natural 
coordinates. A motion reconstruction problem consists in a kinematic analysis of a rigid multibody 
system whose motion is usually overdetermined by an excess of data. The method has been applied to 
the analysis of human motion which is a typical case of an overdetermined kinematic problem as a 
large number of markers are usually placed on a subject to capture its movement. The efficiency of the 
method has been tested both with computer-simulated and real experimental data using models that 
include open and closed kinematic loops. 
 
Response to Reviewers: Answers for Reviewer #1: 
 
1. The references suggested by the reviewer have been added in the new 8th paragraph of the 
introduction. 
 
2. Heading 3 has been corrected. However, in section 4.1, 1st paragraph, 4th line, underdetermined has 
not been changed as we believe it is the right term. 
 
The linear system of equations (2) only includes rigid body constraints, joint constraints and relative 
coordinate constraints as explained in section 2, i.e. the driving constraints are not included in eq. (2). 
Driving constraints appear only in the objective function of the optimization problem. Therefore eq. (2) 
is underdetermined because there are infinite positions of the multibody model (infinite solutions q* of 
eq. 2) that are consistent with them. 
 
3. The fourth difficulty mentioned in the review about a particular case of incompatibility is included in 
the first one. To deal with the various situations of incompatibility, in the subsequent paragraphs the 
system of equations 2 is replaced with the corresponding normal equations. 
 



4. Certainly, it will be more efficient to compute the nullspace of Fiqk since this matrix is smaller, 
sparser and better conditioned than Ak. In the paper we have used the nullspace of Ak just for 
demonstration and not for calculation. 
 
5. Although the orthogonal matrix Q is not sparse, there are implementations of the QR decomposition 
that neither compute nor store the matrix Q. To solve Ax=b we use an implementation that returns 
directly the column QTb and the matrix R, which is still sparse.  
 
Answers for Reviewer #2: 
 
i) We have made the sentence more precise, giving more information.  
 
ii) As mentioned in second paragraph of section 2, angles can be added to natural coordinates. If these 
angles are driven, the corresponding entry to matrix S must be added (as explained in page 4, lines 7- 
11). We have clarified page 4 line 7 accordingly. The rest of the methodology is not affected. 
 
iii) New paragraph has been added at the end of section 2. 
 
iv) Reference [18] has been added 
 
v) Filtering is made as post processing of experimental data. New sentence has been added at the end 
of second paragraph in section 5.1 to explain this. 
 
vi) Page 8, lines, 42, 46, 47.  R and Q in bold. 
 
vii) We have included additional results in a paragraph and a chart at the end of section 5.1.  
 
viii) New sentence has been added at the end of section 4.5 as well as reference [34]. 
 
Other changes: 
Added "only" at last sentence of last paragraph of section 2 to be more precise. 
 



colour figure
Click here to download high resolution image

http://www.editorialmanager.com/mubo/download.aspx?id=13370&guid=a8ab14b1-9b66-49c2-8542-cea2e55717ee&scheme=1


1 

An optimization method for overdetermined 
kinematic problems formulated with natural 
coordinates 
Sergio Ausejo (sausejo@ceit.es) – corresponding author 

Ángel Suescun 

Juan Celigüeta 

 

Affiliation (for the 3 authors) 

CEIT and TECNUN (University of Navarra). Manuel de Lardizábal 15, 20018 

San Sebastian, Spain. 

Tel. +34 943 212800 

Fax +34 943 213076 

www.ceit.es 

Abstract 

In this paper, we present an optimization method for solving the nonlinear constrained 

optimization problem arising from a motion reconstruction problem formulated with natural 

coordinates. A motion reconstruction problem consists in a kinematic analysis of a rigid multibody 

system whose motion is usually overdetermined by an excess of data. The method has been 

applied to the analysis of human motion which is a typical case of an overdetermined kinematic 

problem as a large number of markers are usually placed on a subject to capture its movement. The 

efficiency of the method has been tested both with computer-simulated and real experimental data 

using models that include open and closed kinematic loops. 
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1 Introduction 

The kinematic analysis of a mechanism has applications in fields like robotics, 

animation or ergonomics. In robotics, the kinematic analysis is performed for 

mechanisms with few degrees of freedom (DoFs) which are usually determined, 

i.e., the input data is enough to solve the problem. In animation, the mechanisms 

have more DoFs as a simplified human body is usually considered and the 

kinematic problem is frequently undetermined as the input data is not enough to 

estimate the posture of the subject [1]. In ergonomics and biomechanics, the 

kinematic human models have a large number of DoFs and the kinematic problem 

is overdetermined as more input data than necessary are available [2]. 

 

In ergonomics and biomechanics, the inputs to the kinematic analysis are usually 

the motion data measured with a motion capture system [3, 4]. In this context the 

kinematic analysis is usually called motion reconstruction. One of the most 

frequently used technologies for motion capture is the optoelectronic which 

measures the position of small balls, called markers, located on the skin of the 

subject typically at a frequency of 50 Hz. 

 

In this paper, we will consider only kinematic methods for overdetermined 

problems. These methods can be classified according to Lu and O’Connor into 

three groups: direct methods (DMs), segmental optimization methods (SOMs) and 

global optimization methods (GOMs). In this context, GOM does not mean that a 

global minimizer is calculated. It means that measurement errors are minimized 

for the whole body at once instead of at segment level in SOMs. 

 

DMs [5, 6] calculate the pose (position and orientation) of each body segment 

independently and directly from the coordinates of three non-collinear markers on 

each segment without taking into account the errors introduced by the skin 

movement artifact. Skin movement artifact is defined as the relative movement 

between markers and the underlying bone caused by passive and active soft 

tissues. 

 

SOMs calculate the pose of each body segment independently but skin movement 

artifact is minimized in a least-squares sense at a body segment level [7-11]. 

SOMs estimate the optimal rigid body transformation by minimizing the 

deformation of the cluster of markers (minimum of three noncollinear markers) on 

the body segment in a least-squares sense. With DMs and SOMs joints may 

dislocate in the reconstructed motion as joint integrity is not guaranteed. 

 

GOMs [12-16,28] calculate the pose of all body segments at once by minimizing 

the global measurement error introduced by the skin movement artifact and 

guarantee joint integrity by introducing joint constraints. Usually the global 

measurement error is defined as the sum of squared distances between the 

measured and model-determined marker positions. In general, GOMs estimate 

body segment poses more accurately than DMs and SOMs [13, 15].. Current 

GOMs define skeletal models using relative coordinates and are formulated as 

nonlinear unconstrained optimization problems. However, a closed-loop system 

modeled with relative coordinates requires at least one nonlinear closing loop 

kinematic constraint, thus producing a nonlinear constrained optimization 
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problem.  Consequently, all the GOMs presented up to now are only valid for 

open-loop mechanisms. Furthermore, the existing GOMs are not valid for systems 

modeled with natural coordinates because these coordinates lead to a nonlinear 

constrained optimization problem with nonlinear equality constraints 

independently of the topology of the multibody system. 

 

In this paper we propose an optimization method for solving the nonlinear 

constrained optimization problem arising from an overdetermined kinematic 

problem formulated with natural coordinates [17, 18]. The method is valid for 

multibody models that include open and closed kinematic loops and it is able to 

converge to a local minimizer from any remote starting point. Natural coordinates 

are selected because the resultant optimization problem has a quadratic objective 

function and the equality constraints are linear or quadratic. Additionally, the 

optimization problem is the same for models with open and closed kinematic 

loops. 

 

Natural coordinates have been used previously for inverse kinematic and inverse 

dynamic analysis to study sport performance [31, 32], in gait analysis [28, 29] or 

for motion reconstruction by means of a single camera [30]. Recently, Czaplicki 

[33] used natural coordinated for inverse dynamics, direct dynamics and static 

optimization analysis of a 2D lower limb model. However, natural coordinates 

have not been used to reconstruct the motion of a 3D whole body model with 

kinematic closed-loops and the motion reconstruction problem has not been 

formulated as the optimization problem described in section 3. 

 

The rest of the paper is organized as follows: section 2 presents how human 

skeletal models are modeled using natural coordinates, section 3 defines 

mathematically a motion reconstruction problem for a GOM, section 4 presents 

the optimization method for overdetermined kinematic problems proposed in this 

paper, section 5 shows the numerical results and section 6 presents conclusions 

and future work. 

 

2 Human skeletal model 

We have used a multibody approach to define human skeletal models. A model is 

defined using natural coordinates [17, 18], which describe the position and 

orientation of bodies through the Cartesian components of points and vectors 

located at the mechanism joints. Natural coordinates have been used due to their 

potential advantages for the optimization problem arising from the motion 

reconstruction problem. These advantages are discussed in the next section. 

 

Natural coordinates are not independent coordinates but interrelated through 

certain equations known as constraint equations. The number of constraint 

equations is equal to the difference between the number of coordinates and the 

number of degrees of freedom (DoFs). Natural coordinates do not include relative 

coordinates (joint angles and relative distances) but they can be added to the 

model together with the corresponding constraint equations. There are four types 

of constraint equations: rigid body constraints that originate from the rigid body 

conditions for each element; joint constraints that originate from the kinematic 

pairs; relative coordinate constraints that originate from the additional relative 
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coordinates; and driving constraints that are used to define the motion of the 

multibody system. 

 

Rigid body constraints, joint constraints and relative coordinate constraints are 

referred to as kinematic constraints. The set of m kinematic constraints that define 

a model can be expressed in matrix form as follows: 

 

0)(  q  

where q is the column vector of n dependent coordinates. In practice, there are 

situations where an excess of kinematic constraints is obtained [18]. This means 

that some of the kinematic constraints, which are called redundant constraints, are 

not independent from the remaining ones. 

The coordinates whose motion is defined by driving constraints are called driven 

coordinates. The r driven coordinates are a subset of q and they can be expressed 

in matrix form as follows: 

 

Sqz   

where z is the column vector of r driven coordinates, which can include Cartesian 

coordinates or relative coordinates. S is an r  n matrix and the elements of its i-th 

row are all zero except the one corresponding to the coordinate of q selected as 

the i-th driven coordinate. The set of r driving constraints can be expressed in 

matrix form as follows: 

 

0)(),(  tt dSqq  

where d is a column vector of size r  1 whose i-th element is a given function of 

time gi(t) that gives the value of corresponding driven coordinate. The driving 

constraints can be used to define the motion of any dependent coordinate of the 

model, e.g. joint angle, point coordinate or vector coordinate. However, when an 

optoelectronic motion capture system is used to record the motion of the subject, z 

usually contains the model-marker coordinates and d contains only the measured-

marker coordinates. 

The outputs of motion reconstruction are usually the joint angles of the model. 

Joint angles can be added to the vector q which requires the addition to Ф(q) of 

additional constraint equations. However, it is more efficient to calculate joint 

angles from the natural coordinates using a fast and simple post-processing. 

 

 

3 Motion reconstruction problem 

In this paper, we propose a new GOM to solve the motion reconstruction problem 

for a human skeletal model formulated with natural coordinates. Therefore, the 

pose of all body segments of the multibody model have to be calculated at once 

by minimizing the global measurement error and the joint integrity has to be 

guaranteed. We define the global measurement error as the sum of squared 

distances between the measured and model-determined marker positions. 
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In order to fulfill the previous conditions, the kinematic constraints of the model 

have to be exactly satisfied and the quadratic error of the driving constraints has to 

be minimized. Mathematically this is a nonlinear constrained optimization 

problem or nonlinear programming (NLP) problem: 

),(),(
2

1
)(minimize

T ttf
n

qqq
q




 

0)(:tosubject  q  

(1) 

 

The objective function does not depend on the time variable because the NLP 

problem (1) is solved for a given time, i.e. for each frame recorded with the 

motion capture system. The NLP problem (1) has a quadratic objective function 

and the equality constraints are always a linear or quadratic function of the natural 

coordinates [18]. As indicated previously, there are situations where the equality 

constraints may contain redundant constraints. Additionally, the Jacobian matrix 

of the equality constraints is sparse with linear or constant terms. This means that 

efficient algorithms for sparse matrix factorization can be used. 

 

Several optimization algorithms exist for solving the NLP problem (1) when there 

are not redundant constraints, e.g. Sequential Quadratic Programming methods 

[19] or Interior-point methods [20, 21]. However, when the equality constraints 

contain redundant constraints, as is the case in our problem, only a few 

optimization algorithms are available. Wright [22] presented an algorithm valid 

for redundant equality constraints and large optimization problems, which is 

based on the SQP method. Izmailov and Solodov [23] presented an algorithm 

valid for redundant equality constraints which is not practical for large 

optimization problems like our NLP problem (1) because it requires a singular 

value decomposition (SVD) of the Jacobian matrix of the equality constraints. The 

SVD yields a dense matrix in general even when the Jacobian matrix of the 

constraints is sparse and the time required for computing the SVD is high for large 

optimization problems. 

4 Optimal tracking method 

In this paper we propose an optimization method, which is called Optimal 

Tracking Method (OTM), to solve the NLP problem (1) with or without redundant 

equality constraints. OTM is an iterative method that at each iteration step solves 

a quadratic programming (QP) subproblem. The linear equality constraints of the 

QP subproblem at an intermediate iteration point q
k
 are the linearized equality 

constraints of the NLP problem (1): 

 

kk  qq     (2) 

where Δq is the increment in the coordinates, Ф
k
 is the vector of kinematic 

constraints evaluated at point q
k
 and Фq

k
 is the Jacobian matrix of the kinematic 

constraints evaluated at point q
k
. The i-th row of Фq

k
 is the transposed gradient 

vector (i
T) of the i-th kinematic constraint. 
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The objective function of the QP subproblem is the same objective function of the 

NLP problem (1) because it is already quadratic. This objective function can be 

written at an intermediate iteration point q
k
 + Δq using its Hessian matrix H

k
 and 

gradient vector g
k
 as follows: 

 

kkkk ffh  qgqHqqqq
T

T

2

1
)()(  

where 

kkkk f  TT )( SdSqSg   (3) 

SSH
T2  kk f     (4) 

 

Matrix H
k
 is a constant diagonal matrix with 0’s in the main diagonal except in 

the positions corresponding to driven coordinates which contain 1’s. Therefore, 

H
k
 is n  n and positive semidefinite, because the number of driven coordinates is 

always less than the number of dependent coordinates. From now on, H
k
 is 

denoted simply as H because it is constant and does not depend on q
k
. 

 

Consider a generic motion reconstruction problem with m nonlinear kinematic 

constraints (Ф), n dependent coordinates (q), r driving constraints (Ψ) or 

equivalently r driven coordinates, and s DoFs. Then, the QP subproblem that has 

to be solved at each iteration step can be written as 

kk fh 


qgqHqq
q

T
T

n 2

1
)(minimize  

kk  qqtosubject  

(5) 

When the m nonlinear kinematic constraints are independent, the QP subproblem 

can be solved using standard QP algorithms. However, when there are redundant 

constraints, some problems arise. 

4.1 Incompatibility of the linearized kinematic constraints 

When redundant constraints exist within the m nonlinear kinematic constraints in 

(1), some problems arise with the linearized kinematic constraints in the QP 

subproblem (5). At a solution point q
*
 of the NLP problem (1), the linear system 

of equations (2) is compatible underdetermined; the number of linearly 

independent constraints in Фq
k
 is (n – s), and there are m – (n – s) linearly 

dependent constraints coming from the m – (n – s) nonlinear redundant constraints 

in Ф(q). But the problem is that at an intermediate iteration point q
k
, the 

redundant constraints can induce in Eq. (2) more linearly independent constraints 

than required [18]. In this situation, there are three potential difficulties with the 

QP subproblem (5): 

 

1. The linear system of equations (2) could become incompatible. Therefore, 

the QP subproblem does not have a solution because a feasible region does 

not exist. 
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2. The system of equations (2) could be compatible determined. This means 

that the number of linearly independent equations induced by the 

redundant equations in Фq
k
 is s. Therefore, the feasible region of the QP 

subproblem is a single point. 

3. The system of equations (2) could be compatible underdetermined with the 

rank of Фq
k
 greater than (n – s) but less than n. Then, there is an excess of 

linear constraints and the multibody loses some DoFs but the QP 

subproblem (5) can be solved. 

 

OTM deals with the incompatibility of linear system of equations (2) by 

modifying the linearized kinematic constraints. Instead of Eq. (2) consider the 

following linear equality constraints 

 

kk
bqA     (6) 

where 

kkk
qqA 

T
   (7) 

kk 
Tk

qb   (8) 

Eq. (6) corresponds to the normal equations of Eq. (2). The linear system of 

equations (6) is always compatible. Thus, the problem of incompatible linear 

constraints coming from the nonlinear redundant constraints is eliminated. A
k
 is a 

n  n sparse symmetric positive semidefinite matrix. Its rank at the solution is (n – 

s) but at intermediate iteration points it is greater or equal to (n – s) and less or 

equal to n. 

 

It can be argued that Eq. (2) is preferable to Eq. (6) because Фq
k
 is in general 

smaller, has less nonzero elements and has better conditioning than A
k
. 

Unfortunately, as mentioned above Eq. (2) could become incompatible. Then, the 

QP subproblem (5) does not have a solution, the iterative process cannot find the 

next iteration point and consequently, it fails to find a solution. 

 

Instead of the QP subproblem (5) OTM solves the following QP subproblem with 

the new linear constraint equations (6). 

kk fh 


qgqHqq
q

T
T

n 2

1
)(minimize  

kk
bqA tosubject  

(9) 

The question of the linearly dependent constraints induced by the redundant 

constraints in the linear system of equations (6) has not been addressed yet. Two 

possible approaches to handle linearly dependent constraints are: first, eliminate 

the linearly dependent constraints in A
k
 and then use a standard QP algorithm; and 

second, let the optimization algorithm deal directly with the linearly dependent 

constraints. 
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The first approach can be applied but it has to be performed at each iteration step 

because the number of linearly dependent constraints could change at each 

iteration. OTM uses the second approach, which is more efficient because the 

factorization of A
k
 is not required at each iteration in order to detect and eliminate 

the linearly dependent constraints. Instead, the linearly dependent constraints are 

eliminated directly (see section 4.3) during the solution of the QP subproblem. 

4.2 Lagrange theorem 

Applying the Lagrange’s theorem we obtain that the solution to the QP 

subproblem (9) must satisfy Eqs. (10) and (11): 











 


























k

k

k

k

b

gq

A

AH

λ0
 (10) 

0λ ld  (11) 

where λld is the column vector of the Lagrange multipliers associated to the 

dependent columns of A
k
 and λ is the column vector of all the Lagrange 

multipliers. The linear Eqs. (10) and (11) are only necessary conditions for a 

minimum of the QP subproblem (9). A maximum and a saddle point also satisfy 

these equations. However, under certain conditions the solution of the linear Eqs. 

(10) and (11) is unique. Furthermore, this unique solution is a global isolated 

minimum of the QP subproblem (9) at any iteration point q
k
. Suppose that Z is a 

basis for the nullspace of A
k
 and assume that the column vectors Δq

*
 and λ

*
 

satisfy Eqs. (10) and (11) and the reduced-Hessian matrix 

 

ZHZ
T  

is positive definite, then Δq
*
 is a global isolated minimum of the QP subproblem 

(9). The positive definiteness of the reduced-Hessian matrix Z
T
HZ is a sufficient 

condition for a global isolated minimum of the QP subproblem (9). This can be 

proved in three steps: 
 

1. Firstly, if the number of driven coordinates is enough to define completely 

all DoFs of the human skeletal model, then the reduced-Hessian matrix 

Z
T
HZ is positive definite at any iteration point q

k
 (see Appendix for 

details). 

2. Secondly, suppose that the reduced-Hessian matrix Z
T
HZ is positive 

definite, then the solution of Eqs. (10) and (11) is unique (for example, see 

[24]). 

3. Thirdly, suppose that the reduced-Hessian matrix Z
T
HZ is positive 

definite, then the unique solution of Eqs. (10) and (11) is a global isolated 

minimum of the QP subproblem (9) (for example, see [24]). 

4.3 Numerical method for OTM 

At each iteration step OTM has to solve Eqs. (10) and (11). The coefficient matrix 

in Eq. (10) is composed of matrices A
k
 and H. Recall that H is an n  n constant 

positive semidefinite diagonal matrix and A
k
 is a n  n sparse symmetric positive 
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semidefinite matrix with rank p where (n – s) ≤ p ≤ n. Then, the coefficient matrix 

in Eq. (10) is sparse, symmetric and in general singular. Therefore, a stable 

numerical method is required in order to detect the linearly dependent constraints, 

set their associated variables λld to zero and solve the equations. 

 

A numerical method based on the QR decomposition has been developed. The 

method consists in performing a QR decomposition of the coefficient matrix in 

Eq. (10). Then, the linearly dependent constraints can be detected in R using a 

threshold and their associated variables λld can be set to zero. Finally the vectors 

Δq and λli can be obtained by a back-substitution. The QR decomposition can be 

computed efficiently because we only need the product of Q by the vector of 

independent terms and we don’t need to compute Q explicitly. 

4.4 Global convergence to a local minimizer 

OTM is based on a sequence of QP subproblems which are expected to converge 

to the solution of the NLP problem (1). To ensure global convergence OTM is 

equipped with two global convergence strategies: merit function and maxmin. 

Notice that the term global convergence does not mean that a global minimizer of 

(1) is calculated. An algorithm is said to be globally convergent if, under suitable 

conditions, it will converge to some local minimizer from any remote starting 

point [19]. 

 

The merit function strategy employs a merit function, which is a measure of 

progress towards a local minimizer, for achieving global convergence. The 

maxmin strategy does not require the definition of a merit function. It calculates 

the two different values of the step-length parameter that minimize the value of 

the objective function and the 2-norm of Ф. From the two values, the maximum is 

selected as the step-length parameter. The convergence properties of OTM have 

been studied by means of numerical experiments that show that OTM is globally 

convergent. 

4.5 Weighted OTM 

OTM can be enhanced by allowing different weighting factors for each driving 

constraint. The weighting factors allow assigning to each driving constraint a 

different weight in the solution. For an optoelectronic motion capture system this 

means that different weighting factors can be assigned to each marker. If a marker 

is noisier than others, then we can assign to this marker a smaller weighting 

factor. For this purpose, a weighting matrix W is included in the objective 

function, and the NLP problem (1) is reformulated as follows 

),()(),(
2

1
)(minimize

T tttf
n

qWqq
q




 

0)(:tosubject  q  

(12) 

where W is a weighting diagonal matrix of size r  r with positive or zero 

weighting factors in the main diagonal. 

 

There are situations where some of the driving constraints are required to be 

satisfied exactly. For example, suppose that the shoe sole must remain exactly 
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parallel to the ground. This implies that the motion of a foot vector perpendicular 

to the sole has to be forced to remain perpendicular to the ground at every time. A 

possible solution is to include this type of driving constraints together with the 

kinematic constraints, making them to be satisfied exactly. 

 

In order to consider this requirement, OTM can be enhanced by dividing the 

driving constraints into two groups: driving constraint Ψm included in the 

objective function, whose errors are minimized; and driving constraints Ψs 

included in the equality constraints, which are satisfied exactly. Then, the 

weighted NLP problem (12) can be rewritten as 

),()(),(
2

1
)(minimize

T
tttf mmm

n

qWqq
q




 

0
),()(

)(
:tosubject 













tt ss qW

q
 

(13) 

where Wm and Ws are weighting diagonal matrices associated with Ψm and Ψs 

respectively. Wm is similar to the weighting matrix presented previously. 

However, the weighting factors of Ws can be only 0’s or 1’s. When a weighting 

factor is 0, the associated driving constraint is inactive. When a weighting factor 

is 1, the associated driving constraint is active. 

 

The new QP subproblem that has to be solved at each iteration step is similar to 

the QP subproblem (9) but the Hessian matrix H and the gradient vector g
k
 must 

be substituted by the weighted Hessian matrix Hw and the weighted gradient 

vector k
wg  which are defined as: 

kkk
w  WSdSqWSg

TT )(  

SWSH
Tw  

The benefits of using a weighted reconstruction and the strategies for using 

weighting factors can be found in [34]. 

5 Results 

OTM has been tested on two different motion reconstruction problems: 10 generic 

reach movements and 12 steering movement. The performance of OTM was 

evaluated using two parameters: mean time per frame and convergence rate. The 

convergence rate is the percentage of frames that converged to the solution for a 

given tolerance value. OTM accepts an iteration point as the solution when the 2-

norm of Ф(q) is less than a predefined tolerance. However, it may happen that the 

maximum number of iterations (nMaxIter) defined by the user is reached. In this 

work, nMaxIter was set to 25 for all motions. 

 

The convergence rate for a given tolerance is usually very close to 100%. 

However, there are at least two causes that prevent the convergence rate from 

reaching 100%: 
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1. If the initial approximation for the first frame is very far from to the 

solution, the nMaxIter defined by the user can be reached before achieving 

the desired tolerance. This may happen during a few initial frames. 

2. The global convergence strategy (see section 4.4) selects the value of the 

step-length parameter α such that acceptable progress towards the solution 

is made. However, this is not always true and the global convergence 

strategy can select an excessively short step-length and nMaxIter can be 

reached before achieving the desired tolerance. 

 

All the motions were reconstructed with two different solvers, QRf and QRx. 

Both solvers use the numeric method described in section 4.3 and differ only in 

the global convergence strategy. QRf uses the merit function strategy and QRx 

used the maxmin strategy. Both solvers and the skeletal model were implemented 

in Matlab


 and the CPU used was a Pentium IV 3.00 GHz. 

5.1 Generic reach movements 

For the generic reach movements, a whole body model based on the RAMSIS 

model was used to reconstruct the 10 motions. The model was tailored to each 

subject under investigation using the software PCMAN [25]. The skeletal 

kinematic model has 27 rigid bodies connected by 10 spherical joints, 7 revolute 

joints, 6 universal joints, and 1 floating joint (3 translations and 3 rotations) 

between ground and pelvis. The model has not kinematic closed-loops and is 

defined with 402 coordinates, 138 driving constraints and 389 kinematic 

constraints (21 of them redundant). Therefore, the coefficient matrix in Eq. (10) 

has size 804  804. 

 

The subjects were asked to push a toggle switch from a standardized initial 

posture and to return back to the initial posture (Figure 1). The trajectories of 39 

surface markers were recorded with the VICON optoelectronic motion capture 

system using nine cameras operating at 50 Hz. Marker trajectories were 

preprocessed by filtering them using a Butterworth filter with a cut-off frequency 

of 4 Hz. 

 

The mean time per frame required to reconstruct the motions depends obviously 

on the tolerance for accepting the solution (Table 1). However, the global 

convergence strategy has not a significant influence on the mean time per frame. 

The convergence rate is always above 97% for every tolerance (Table 2). 

However, 100% is not reached is due to a combination of the two causes 

presented above. 

 

The markers distance errors of a representative trial of the generic arm reaching 

motions are shown in Figure 2 using a bloxplot. The markers distances errors are 

defined as the distance between the measured and model-determined marker at 

each frame and they are quite similar for all trials within an experiment. These 

distance errors were calculated from a motion reconstructed with a tolerance of 

10
-7

 and the QRf numeric method. The medians of the markers distance errors are 

most of them are between 5 and 25 mm, which is considered a typical value in 

motion reconstruction. 
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5.2 Steering movements 

The computer-simulated steering maneuver consisted in turning the steering 

wheel right and left. The driver held the steering wheel at the ten-to-two position 

during the whole motion. The marker trajectories obtained from the computer-

simulated motions were free from measurement errors. Then, artificial noise [13, 

26] was added to the trajectories of the 28 markers used in order to generate 

realistic motion data. 

 

The computer-generated motions were reconstructed using an upper body model 

with 12 rigid bodies and 29 DoFs. The model includes 2 closed-loops 

corresponding to each shoulder girdle, which were modeled similarly to van der 

Helm [27]. The model has 306 coordinates, 96 driving constraints and 292 

kinematic constraints (15 of them redundant). Therefore, the coefficient matrix in 

Eq. (10) has size 612  612. 

 

The mean time per frame required to reconstruct the 12 motions does not depend 

significantly on the global convergence strategy (Table 3) although the maxmin 

strategy requires slightly less time for most of the tolerance values. The 

convergence rate reached almost 100% for all the tolerance values (Table 4). 

 

6 Conclusions and future work 

In this paper, we presented an optimization method for solving the nonlinear 

constrained optimization problem arising from a kinematic analysis of a rigid 

multibody system whose motion is overdetermined. This means that there is an 

excess of motion data to determine the motion of the multibody system. A typical 

case for overdetermined kinematic problems appears in human motion 

reconstruction where a large number of markers are usually placed on a subject to 

capture its motion. 

 

A mayor contribution of this paper is the optimization method, called Optimal 

Tracking Method (OTM), which has been specially designed to handle redundant 

equality constraints. Additionally, to ensure convergence to a local minimizer 

from any remote starting point, it is equipped with a global convergence strategy. 

OTM also allows assigning different weighting factors for each driving constraint. 

 

The optimization problem arising from an overdetermined kinematic problem 

formulated with relative coordinates requires fewer variables than the equivalent 

problem formulated with natural coordinates. However, relative coordinates give 

objective functions and equality constraints (only for models with closed-loops), 

which are highly nonlinear. Using natural coordinates the objective function is 

quadratic and the equality constraints are linear or quadratic. Additionally the 

Jacobian matrix of the equality constraints is sparse with linear or constant terms. 

This means that the optimization problem can be solved very efficiently using the 

algorithm for sparse matrix factorization presented in this paper. 

 

OTM has been tested with computer-simulated data and real experimental data 

giving satisfactory results. Almost 100% of all the frames were successfully 

reconstructed within the desired tolerance in a reasonable time. 
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A comparative study between motion reconstruction methods formulated with 

relative coordinates and OTM is suggested as a topic for further research. A fair 

comparison should include skeletal models with open- and closed-loops. Another 

possible path for future work is the addition of inequality constraints. They can be 

used to include for example joint limits or additional constraints from the 

environment (e.g. collision avoidance). 

Appendix 

Suppose a motion reconstruction problem without redundant constraints that has 

m (= n – s) independent nonlinear kinematic constraints Ф and r (= s) driving 

constraints Ψ, such that the motion of the s DoFs of the skeletal model is defined. 

Note that the Jacobian matrix of the driving constraints is constant 

Sq k  

The motion reconstruction problem can be solved using the Newton-Raphson 

method, which is an iterative method: 





























k

k
k

k

q
S

q  (A1) 

kkk
qqq  1   

Eq. (A1) is compatible determined at any iteration point. This means that the 

matrix 














S
B q

k

 

has full rank, otherwise Eq. (A1) would be underdetermined which is contrary to 

the hypotheses of our problem. The rank of Фq
k
 is (n – s) and the rank of S is 

always r (= s). Hence, S must be such that it complements the rank of Фq
k
 to n. 

From a physical point of view this means that the driven coordinates must be 

chosen in such a way that the motion of all DoFs is defined. 

 

If Ф has some redundant constraints, the matrix B has some additional dependent 

rows but its column rank is n. Additionally, if the number of driving constraints is 

greater than s, the matrix B has also some additional dependent rows but its 

column rank is still n. Therefore, when a motion reconstruction problem, with or 

without redundant constraint, has r ( s) driving constraints that define the motion 

of all DoFs of the skeletal model, the rank of matrix B is always n at any iteration 

point. Then, the matrix B
T
B has also rank n and is positive definite. 

 

Taking into account Eqs. (4) and (7), matrix (A
k
 + H) can be written as follows 

BBHA
T)( k  

Therefore, (A
k
 + H) is positive definite. Finally, if matrix (A

k
 + H) is positive 

definite, it can be proved straightforward that matrix Z
T
HZ is positive definite. 
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Figure Legends 

Fig. 1. Generic reach movement. Left: Starting posture. Right: Posture when the target is reached. 

Fig. 2. Boxplot of the distance error of representative markers of a generic arm reaching motion. 

 
 
 

TABLES 
 

 Tolerance for accepting a solution 

Numeric method 10
-4

 10
-5

 10
-6

 10
-7

 

QRf 0.53 0.83 1.08 1.25 

QRx 0.64 0.79 1.02 1.25 

Table 1: Mean time per frame for generic reach movements (in seconds). 

 
 

 Tolerance for accepting a solution 

Numeric method 10
-4

 10
-5

 10
-6

 10
-7

 

QRf 99,56 98,14 97,60 97,49 

QRx 98,74 98,58 97,93 97,32 

Table 2: Convergence rate (in %) of the generic reach movements. 

 
 

 Tolerance for accepting a solution 

Numeric method 10
-4

 10
-5

 10
-6

 10
-7

 

QRf 0.43 0.52 0.64 0.71 

QRx 0.44 0.48 0.60 0.67 

Table 3: Mean time per frame for steering movements (in seconds). 

 
 

 Tolerance for accepting a solution 

Numeric method 10
-4

 10
-5

 10
-6

 10
-7

 

QRf 99,56 99,34 99,34 99,34 

QRx 99,84 99,72 99,67 99,67 

Table 4: Convergence rate (in %) of the steering movements. 
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Answers for Reviewer #1: 
 
1. The references suggested by the reviewer have been added in the new 8th paragraph of the 
introduction. 
 
2. Heading 3 has been corrected. However, in section 4.1, 1st paragraph, 4th line, 
underdetermined has not been changed as we believe it is the right term. 
 
The linear system of equations (2) only includes rigid body constraints, joint constraints and 
relative coordinate constraints as explained in section 2, i.e. the driving constraints are not 
included in eq. (2). Driving constraints appear only in the objective function of the optimization 
problem. Therefore eq. (2) is underdetermined because there are infinite positions of the 
multibody model (infinite solutions q* of eq. 2) that are consistent with them. 
 
3. The fourth difficulty mentioned in the review about a particular case of incompatibility is 
included in the first one. To deal with the various situations of incompatibility, in the 
subsequent paragraphs the system of equations 2 is replaced with the corresponding normal 
equations. 
 
4. Certainly, it will be more efficient to compute the nullspace of Fiqk since this matrix is 
smaller, sparser and better conditioned than Ak. In the paper we have used the nullspace of Ak 
just for demonstration and not for calculation. 
 
5. Although the orthogonal matrix Q is not sparse, there are implementations of the QR 
decomposition that neither compute nor store the matrix Q. To solve Ax=b we use an 
implementation that returns directly the column QTb and the matrix R, which is still sparse.  
 
Answers for Reviewer #2: 
 
i) We have made the sentence more precise, giving more information.  
 
ii) As mentioned in second paragraph of section 2, angles can be added to natural coordinates. 
If these angles are driven, the corresponding entry to matrix S must be added (as explained in 
page 4, lines 7- 11). We have clarified page 4 line 7 accordingly. The rest of the methodology is 
not affected. 
 
iii) New paragraph has been added at the end of section 2. 
 
iv) Reference [18] has been added 
 
v) Filtering is made as post processing of experimental data. New sentence has been added at 
the end of second paragraph in section 5.1 to explain this. 
 
vi) Page 8, lines, 42, 46, 47.  R and Q in bold. 
 
vii) We have included additional results in a paragraph and a chart at the end of section 5.1.  
 
viii) New sentence has been added at the end of section 4.5 as well as reference [34]. 
 
Other changes: 
Added “only” at last sentence of last paragraph of section 2 to be more precise. 
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