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Abstract

We introduce weighted links in a local public good game in an endogenous network with hetero-

geneous players. We find that the equilibrium predictions are sharper than when links are not

weighted. In particular, active players form a complete core-periphery graph, where they are either

in the core of interconnected players, or connected to every player in the core. Furthermore, a

player’s type is tightly related to her public good provision and her position in the network.
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1. Introduction

Inspired by influential contributions on global public goods (Warr, 1983; Bergstrom, Blume

and Varian, 1986), some researchers have studied local public goods, which benefit only some

individuals (Bramoullé and Kranton, 2007; Allouch, 2015, 2017). Indeed, individuals often choose

between alternatives whose advantages they do not know. In order to take a decision, they acquire

some information on these benefits either personally or through their peers. Since agents benefit

from their neighbors’ investment, personal acquisition of information is a local public good.

Most models study public good provision in fixed networks. However, for some applications,

such as collecting and sharing information with friends, links are often endogenous as individuals

decide with whom to interact in order to collect information. In a seminal contribution, Galeotti

and Goyal (2010) allow homogeneous players to establish unweighted links, and show that strict

Nash equilibria are core-periphery networks, in which large contributors are linked, while others

link to them.

∗Corresponding author
Email addresses: mkinateder@unav.es. (Markus Kinateder), LucaPaolo.Merlino@uantwerpen.be. (Luca Paolo

Merlino)

Preprint submitted to Games and Economic Behavior January 21, 2022



Yet, individual characteristics are relevant in most applications. Consider consumers who decide

how much information about alternative products to acquire (Feick and Price, 1987) or farmers

who learn about new fertilizers (Conley and Udry, 2010). In these examples, richer consumers

and farmers with bigger plots value more the same piece of information. Hence, these individual

characteristics affect public good provision and networking; e.g., influential consumers (market

mavens) enjoy shopping more (Feick and Price, 1987). This endogeneity creates a challenge for the

estimation of the impact of social networks on behavior (Jackson, 2010).

Allowing for heterogeneity, however, significantly complicates the theoretical analysis. Kinateder

and Merlino (2017, 2021) show that, when the benefits from public good consumption vary across

players, they form nested split graphs, where players have nested neighborhoods.1 However, the

players who would demand more public good in isolation do not necessarily provide more. Hence, it

is not possible to establish a tight relationship between a player’s type, her position in the network

and her contribution to the public good. This makes it difficult to employ these models in theoretical

and empirical applications.

The contribution of this paper is to show that the equilibrium predictions are sharper if we

allow players to establish weighted links. In the model, players simultaneously choose public good

provision and weighted links. Links are established unilaterally, but once two players are linked,

they access each other’s public good provision proportionally to the weight of the link connecting

them. Players differ in the (concave) valuation of consuming the public good; we then define better

types as those who optimally acquire more public good in isolation.

We show that allowing players to establish weighted links implies that a player is active, i.e.,

contributing to the public good, only if she has completely exhausted the free riding opportunities,

that is, only if there are no contributors left to whom she can profitably link. Indeed, when links

are either 0 or 1, players who need a small additional amount of public good might prefer not to

establish a link to a large contributor. When links are weighted, players can always modulate the

weight of a link to their desire. Hence, a player contributes to the public good only after she has

links of weight 1 to all large contributors.

We then characterize sociable Nash equilibria (Kinateder and Merlino, 2021) in which players

establish all weakly profitable connections.2 In that case, active players form a complete core-

periphery graph, i.e., they are either in a core of fully-interconnected players, or in the periphery, in

which case they establish a link of weight 1 to all players in the core. This result stems from the fact

that, as we have just discussed, active players establish links of weight 1, together with two other

1When homogeneous players’ efforts are strategic complements, nested split graphs also emerge if the value
function is convex (Hiller, 2017).

2In other words, a Nash equilibrium is sociable if no player can increase the weight of a link (without changing
other links), while obtaining the same payoffs. This refinement prevents situations in which, out of indifference,
many networks can be an equilibrium.
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equilibrium requirements: first, conditional on linking, a player links to the largest contributors;

and second, the largest contributors form a core, as otherwise they could increase their utility by

linking among them. Hence, while weighted links discipline the behavior of active players, none of

them establishes any weighted link in equilibrium.

In any non-empty sociable equilibrium network, only inactive players, i.e., those who do not

contribute to the public good, establish weighted links. Additionally, there are no isolated players,

as a weighted link to the largest contributor is profitable also for players with very low valuations.

We then derive the implications of the equilibrium characterization for players’ public good

provision and their linking behavior. First, only players of the best type can be in the core, and

the size of the core is bounded by the cost of establishing links. Second, better types have more

links and contribute more to the public good, so that players are inactive only when their type is

sufficiently low.

Hence, in contrast to models which restrict links to be either 0 or 1, in our model there is a tight

relationship between players’ type, their public good provision and their network position. This

implies that a player’s type can be inferred from her network position or her public good provision.

Finally, we discuss the robustness of the equilibrium characterization of the model in Section

4. There, we characterize strict Nash equilibrium networks and discuss the role of alternative

assumptions, such as different linking technologies, one-way flow of spillovers, or the introduction

of a fixed cost of linking.

This paper naturally relates to Galeotti and Goyal (2010). They assume that players are ho-

mogeneous and links can be either 0 or 1; then, strict Nash equilibrium networks are complete

core-periphery graphs. Allowing for heterogeneous players, Kinateder and Merlino (2017) show

how the characterization is affected by the source of heterogeneity. Kinateder and Merlino (2021)

study income redistribution and inequality in a more general model with non-linear best replies and

a budget constraint. The contribution of this paper is instead to allow for weighted links.

There are a few papers that study the possibility of establishing weighted links. In particular,

Bloch and Dutta (2009) and Baumann (2021) develop network formation models with weighted

links, but without strategic interaction on the resulting network. Hence, differently from here, in

those models the value of connections does not depend on players’ level of activity.3

We model network formation non-cooperatively (Bala and Goyal, 2000). When players only

choose links, heterogeneity in valuation plays a minor role (Galeotti, Goyal and Kamphorst, 2006).

Yet, it significantly affects the equilibria when linking costs are also heterogeneous (Billand, Bravard

and Sarangi, 2011) to a point that Nash networks might not exist (Haller, Kamphorst and Sarangi,

3Cabrales, Calvó-Armengol and Zenou (2011), Galeotti and Merlino (2014) and Merlino (2014, 2019) introduce
strategic interaction when players decide how much to invest in an undifferentiated socialization effort, so that players
decide how much to link, but not with whom.
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2007). In our model, the players’ benefit from linking is determined endogenously by their choice

of effort.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section

3 presents the main results, while Section 4 discusses their robustness. Section 5 concludes. All

proofs are in the appendix.

2. Model

We study a local public good game, in which each player i ∈ N = {1, ..., n} exerts effort xi ∈ X,

where X = [0,+∞) and establishes costly weighted links to free ride on the effort exerted by others.

Denote a weighted directed network g by an adjacency matrix in which each line i represents

player i’s links by a row vector gi = (gi1, ..., gin), where gij ∈ [0, 1], for each j ∈ N \ {i} and gii = 0

for all i ∈ N . Let gi ∈ Gi = [0, 1]n−1. Network formation is non-cooperative (Bala and Goyal,

2000): player i links to j with weight gij at a cost k · gij > 0. We show below that direct spillovers

are never negative, so that incoming links are always accepted. We say that player i links to player

j if gij > 0. We define Ni(g) = {j ∈ N : gij > 0} as the set of players to whom i links, i.e., the set

of i’s neighbors.

Spillovers flow among connected players, independently of who initiated the link. This model

thus captures situations where one player pays for the communication or link, but then information

is exchanged between both. Examples for this are the acquisition and exchange of information

about new products and technologies with friends and social acquaintances (Feick and Price, 1987;

Conley and Udry, 2010). More formally, we represent the network of spillovers by ḡ, the closure of

g. In the undirected network ḡ, ḡij = max{gij , gji} for each i, j ∈ N ; Ni(ḡ) = {j ∈ N : ḡij > 0} is

the set of players i is linked to in ḡ, and let ηi(ḡ) = |Ni(ḡ)| be the number of i’s neighbors in ḡ, or

i’s degree. A player i is isolated if ḡij = 0 for all j ∈ N \ {i}.
A core-periphery graph is a network such that for every pair of players l,m in the core C(ḡ),

ḡlm = 1, while for every pair of players i, j in the periphery P(ḡ), ḡij = 0; furthermore, for any

i ∈ P(ḡ), there exists l ∈ C(ḡ) such that ḡil = 1.4 A complete core-periphery graph is a core-

periphery network where ḡil = 1 for all all i ∈ P(ḡ) and l ∈ C(ḡ). A weighted core-periphery graph

is a network such that for every pair of players l,m in the core C(ḡ), ḡlm > 0, while for every pair

of players i, j in the periphery P(ḡ), ḡij = 0; furthermore, for any i ∈ P(ḡ), there exists l ∈ C(ḡ)

such that ḡil > 0. A star is a (weighted) core-periphery network with a single player in the core.

Let byc be the floor operator of any y ∈ R+. Following Mahadev and Peled (1995), in a nested

split graph ḡ with degree partition D = (D0, D1, ..., DK),5 nodes can be partitioned in independent

4Differently from Galeotti and Goyal (2010), we use the standard definition of core-periphery graphs, whereby
players in the core can have different neighborhoods.

5Take ḡ whose positive degrees are d(1) < d(2) < ... < d(K) and let d0 = 0 (even if there is no agent with degree 0
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sets Di for i = 1, ..., bK2 c containing the periphery players and a dominating set of core players

∪K
i=bK2 c+1

Di in the connected subgraph of ḡ constituted by N \D0. Moreover, the neighborhoods

of the nodes are nested. More formally, for each node v ∈ Di, for i = 1, ...,K:

Nv(ḡ) =

{
∪ij=1DK+1−j if i = 1, ..., bK2 c,
∪ij=1DK+1−j \ {v} if i = bK2 c+ 1, ...K.

As players in the core are all connected among themselves and all non-isolated players link to them,

a nested split graph is a core-periphery graph. As the set of agents’ neighbors are nested, for any

pair of agents i, j ∈ P(ḡ), if ηj(g) ≤ ηi(g), then Nj(g) ⊆ Ni(g). In the same spirit, we define a

weighted nested split graph as a weighted core-periphery graph such that, for any i, j ∈ C(ḡ), if∑
z∈N ḡjz <

∑
z∈N ḡiz, then ḡjz ≤ ḡiz for all z ∈ C(ḡ) and, furthermore, for any i, j ∈ P(ḡ), if∑

z∈N ḡjz ≤
∑

z∈N ḡiz, then ḡjz ≤ ḡiz for all z ∈ C(ḡ).

Player i’s set of strategies is Si = X ×Gi, and S = S1 × ...× Sn. Denote a strategy profile by

s = (x, g) ∈ S. Player i’s payoffs are:

Ui(x, g) = fi

(
xi +

∑
j∈N

ḡijxj

)
− cxi −

∑
j∈N

kgij , (1)

where c > 0 is the cost of providing the public good, k > 0 is the linking cost and fi(x) describes

player i’s benefits from public good consumption. Furthermore, for all i ∈ N , (i) fi(x) is a twice

continuously differentiable function in x and i, and it is strictly concave and increasing in x, (ii)

f ′i(0) > c, (iii) limx→∞f
′
i(x) = mi < c, and (iv) ∂2fi/∂x∂i ≤ 0, or f ′i(x) ≥ f ′j(x) for all x > 0,

if i < j. Hence, there is a unique positive optimal investment in the public good in isolation for

every i denoted by ai = arg maxxi∈X fi(xi) − cxi, which represents player i’s type. We assume

a1 ≥ a2 ≥ ... ≥ an > 0. Hence, we refer to lower-indexed players as better types. We say that a

player i is active if xi > 0, and inactive otherwise.

A strategy profile s∗ = (x∗, g∗) is a Nash equilibrium if for all si ∈ Si and all i ∈ N , Ui(s
∗) ≥

Ui(si, s
∗
−i), where s = (si, s−i). Following Kinateder and Merlino (2021), we say that a Nash

equilibrium s∗ is sociable if, whenever there exist i ∈ N and s′i 6= s∗i such that Ui(s
∗) = Ui(s

′
i, s
∗
−i),

then g∗ij ≥ g′ij for any j ∈ N \ {i}, with strict inequality for some j. In words, in a sociable

equilibrium, any player who is indifferent between increasing the weight of one link or not, increases

it; hence, if there is no such indifference, a Nash equilibrium is sociable. Finally, an equilibrium is

strict if no player can unilaterally change her strategy without reducing her payoff. It follows that

any strict equilibrium is sociable.

in ḡ). Further, define Dj = {i ∈ N : di(ḡ) = d(j)} for j = 0, ...,K. Then, the set-valued vector D = (D0, D1, ..., Dk)
is called the degree partition of ḡ.
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3. Results

First, we show that, as in the model with unweighted links, in any equilibrium, active players

always consume exactly the amount of public good as if they were in isolation.

Lemma 1 In any Nash equilibrium (x∗, g∗), x∗i +
∑

j∈N ḡijx
∗
j = ai for all i ∈ N such that x∗i > 0.

The proof of this result adapts that of Lemma 2 in Kinateder and Merlino (2017) to our model

with weighed links.

Note that, when players are homogeneous, the introduction of weighted links does not affect

the equilibrium characterization of Galeotti and Goyal (2010). Indeed, when all players want to

consume a1 in isolation, every two players providing k/c or more public good are linked. Otherwise,

they could (weakly) increase their payoffs by establishing that link, since the cost of free-riding is

lower than that of own provision. Other players then link to all players in the core. As a result,

in a strict Nash equilibrium the total provision of public good is a1, a complete core-periphery

graph emerges and players do not use weighted links. If instead the largest contributors provide

exactly k/c and are not all linked among themselves, then the total provision may exceed a1. In

this case, players may use weighted links out of indifference, but this does not affect the equilibrium

characterization.

To characterize equilibrium networks for heterogeneous players, define k = ca1.6

Theorem 1 A sociable Nash equilibrium always exists. If k ≤ k, in any sociable Nash equilibrium

(x∗, g∗):

(i) ḡ∗ is a weighted core-periphery graph;

(ii) active players form a complete core-periphery graph with links of weight 1;

(iii) there are no isolated players.

In any sociable Nash equilibrium, the largest contributors form a core (Theorem 1.(i)). If there

were several players providing k/c of the public good who are not linked among themselves, there

could be Nash networks without a core. In contrast to the model with homogeneous players, in

this model this also might happen when the total public good provided is a1. To show this, Figure

1 depicts an equilibrium where some players provide k/c. While all of them link to the highest

contributor (so that the total public good provision is a1), the equilibrium network does not display

a core.7

6If k > k, the unique equilibrium network is empty.
7Perturbations of the values of the linking cost do not suffice to break eventual ties. For example, consider an

economy with 5 players where a1 = 4, ai = 3 for the other players. The following is a Nash equilibrium without core
for any k ∈ [c/2, c]: x∗1 = 2, x∗2 = x∗3 = k/c, x∗4 = x∗5 = 1− k/c, g∗i1 = 1 for all i 6= 1, g∗42 = 1 and g∗53 = 1, while no
other links are formed. Since 2 and 3 receive links but are not themselves connected, no core emerges for an interval
of values of the linking cost.
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In a sociable equilibrium, however, all players providing k/c or more are linked among them-

selves, ensuring the formation of the core.8

1 4

2 3 5

Player 1 2 3 4 5
ai 1 .8 .6
x∗i .4 .2 0

Figure 1: Example of a Nash equilibrium that is not a core-periphery graph when fi(xi) = bi
√
xi, c = 1 and k = .2.

Actives players are in gray.

Other players establish links to as many players in the core as it is profitable for them. As a

result, a core-periphery graph emerges.

The main result of this theorem is Theorem 1.(ii): active players establish only links of weight

1, so that in a sociable Nash equilibrium they form a complete core-periphery graph. In other

words, they are either in the core, thereby having a link of weight 1 with all players in the core,

or in the periphery and sponsor themselves a link of weight 1 to all the players in the core. The

intuition for this result is the following. Since core players produce at least k/c, free-riding on them

is cheaper than own provision. Hence, players are active only if they link to all core players, thereby

exhausting all free riding opportunities. For example, in Figure 2, players 1 to 5 are active, and

form a complete core-periphery.

1 2

3 4 5 6 7

Player 1 & 2 3,4,5 6 7
bi 2 1.78885 1.4 .6
ai 1 .8 .49 .09
x∗i .35 .1 0 0

links ḡ12 = 1 gi1 = gi2 = 1 g61 = .97, g62 = .9356 g71 = .35

Figure 2: Example of a sociable Nash equilibrium with fi(xi) = bi
√
xi, c = 1 and k = .3. Core players are in gray

and weighted links are dotted.

It is worthwhile to discuss some other novel features of this model. First, in general, players in

the core might provide identical quantities of the public good, and thus receive links from different

players who are indifferent to whom to link. As a result, periphery players might link to different

players in the core and have several weighted links. Figure 2 depicts an example where players

1 and 2 provide identical quantities, so that players who link to only one of them, such as 7, are

8In the example of Figure 1, sociability would require players 4 and 5 to link either to player 2 or 3, resulting in
a core-periphery graph.
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indifferent to whom to link. Hence, non-nested neighborhoods might emerge. We show in Section

4 below that the predictions of our model are even sharper if we focus on strict Nash equilibria.

Second, there are no isolated players. The intuition is the following. Whenever the network is

non-empty, someone, say player i, provides at least k/c. As then free-riding is cheaper than own

provision, all players find it profitable to establish a link with the appropriate weight to player i.

This contrasts with models of unweighted links, as there, if a player has a very low valuation of the

public good, she might prefer staying isolated and active instead of establishing a full link to the

largest contributor.

In the next proposition, we characterize how players’ type is related to network position and

the size of the core. For this purpose, let |a1| be the number of players of the best type.

Proposition 1 In any non-empty sociable Nash equilibrium (x∗, g∗):

(i) ai = a1 for all i ∈ C(ḡ∗);

(ii) |C(ḡ∗)| ≤ min{bca1/kc, |a1|};
(iii)

∑
i∈N x∗i = a1.

Since all players in the core consume the same amount of public good as they are connected to all

active players, only players of the best type can be in the core. Indeed, if a player of a lower type

were in the core, she would access at least as much public good as players of the best type, which

by Lemma 1 cannot be an equilibrium. Hence, all players whose consumption in isolation is below

a1 are always in the periphery.

Proposition 1.(i) implies that players in the core collectively provide at most a1. This allows us

to bound the size of the core. Indeed, the maximal size is achieved when all core players provide the

same amount of public good; in this case, each of them provides a1/|C(ḡ∗)|. However, in order to

attract links, each player in the core has to provide at least k/c. These two facts yield the threshold

stated in Proposition 1.(ii).

Furthermore, as active agents form a complete core-periphery graph and there are no isolated

players, total provision must then be equal to a1 (Proposition 1.(iii)).

Building on Proposition 1, we can now derive some general results on how players’ type relates

to their provision and their neighborhood in ḡ.

Proposition 2 In any non-empty sociable Nash equilibrium (x∗, g∗) if ai > aj for i, j ∈ N , then:

(i)
∑

z∈N ḡ∗iz ≥
∑

z∈N ḡ∗jz, with strict inequality if x∗i = x∗j = 0;

(ii) x∗i ≥ x∗j , with strict inequality if x∗j > 0.

In words, in the model with weighted links, there is a tight relationship between players’ type,

provision and links. First, better types have more links, and strictly so if they are inactive. The

intuition is the following: since players of better type need more public good, they have to provide

more, in which case they receive more links, and/or link more to free ride on others.
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Furthermore, even when there are multiple equilibria, better types provide more public good.

When links are discrete, better types in the periphery have more links as well, but low type players,

who have a low valuation of the public good, might prefer not to link to all players in the core,

and instead contribute a bit. However, in this model, active players in the periphery have the same

spillovers, and inactive players of better type have more links. These results imply that better types

both link and contribute more also in the periphery.

The next proposition further characterizes the relationship between players’ types and their

public good provision.

Proposition 3 In any non-empty sociable Nash equilibrium (x∗, g∗):

(i) x∗i > x∗j for some i, j ∈ C(ḡ∗) if, and only if,
∑

z∈N ḡ∗izx
∗
z <

∑
z∈N ḡ∗jzx

∗
z, while

∑
z∈N ḡ∗iz ≥∑

z∈N ḡ∗jz;

(ii) there can be i ∈ N such that ai < a1 and x∗i > 0 only if, for all j with aj = a1, j ∈ C(ḡ∗);
(iii) there exists a threshold ñ such that x∗i = 0 for all i ≥ ñ;

(iv) if x∗i = 0 and ai < a1,
∑

z∈N g∗izx
∗
z ≥ ai.

First, since all players in the core are of the best type, they consume the same amount of the

public good. Hence, if one of them provides more, she has to receive less spillovers, as in Figure 3.

Furthermore, since she provides more, she might attract more links, but only from inactive players.

However, while all players in the core are of type 1 (Proposition 1.(i)), not all players of type

1 need to be in the core. Whether any of them is in the periphery has implications for how much

public good other periphery players provide. As Proposition 3.(ii) points out, players of a lower

type—who are then in the periphery—can be active only when all players of type 1 are in the core.

To see why, consider the following cases. First, there can be at most one active player of the

best type in the periphery, as otherwise active players of the same type would consume different

amounts of the public good, thereby contradicting Lemma 1. In that case, all other periphery

players must be inactive by the same reasoning. Figure 3 gives an example of such an equilibrium,

where players 1 to 3 are of the best type, but player 3 is in the periphery and active. It is easy to

see that if players 4 and 5 were active, player 3 would consume less than players 1 and 2, thereby

leading to a contradiction.

Additionally, if there is more than one player of the best type in the periphery, all of them must

be inactive, otherwise they would consume different amounts of the public good. Figure 4 exhibits

an example of such an equilibrium with a star, but the same logic applies to all other equilibrium

networks, as active players have to be arranged in complete core-periphery graphs.

As spillovers crowd out own contribution, we can find a threshold that identifies players who

are inactive in all equilibria, as the provision of players in the core always satisfies their demand

for the public good (Proposition 3.(iii)).
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1 2

3 4 5

Player 1 2 3 4,5
bi 2 1.8
ai 1 .81
x∗i .5 .4 .1 0

links - g21 = 1 gi1 = gi2 = 1

Figure 3: Example of a sociable Nash equilibrium with one best type in the periphery when fi(xi) = bi
√
xi, c = 1

and k = .3. Core players are in gray.

1 2

3 4 5

Player 1 2,3 4,5
bi 2 1.8
ai 1 .81
x∗i 1 0 0

links - gi1 = 1 gi1 = 1

Figure 4: Example of a sociable Nash equilibrium with more than one best type in the periphery when fi(xi) = bi
√
xi,

c = 1 and k = .3. Core players are in gray.

Additionally, inactive players generally consume more than in isolation, as stated in Proposition

3.(iv). Indeed, while the marginal cost of own provision is given by c, the marginal cost of linking is

only k. Hence, in any non-empty network, the marginal unit of public good is cheaper for inactive

players. For example, in the equilibrium depicted in Figure 2, players 6 and 7 consume .66 and

.1225, respectively, which are both higher than their consumption in isolation.

To summarize, in this section we have derived the equilibrium characterization of a local public

good model when players can establish weighted links. The starkest implication of allowing players

to form weighted links is that active players are arranged in complete core-periphery structures

where all links are of weight 1. This translates into a tight relationship between a player’s type,

her position in the network and her contribution to the public good.

In the following section, we discuss some additional properties and extensions to the benchmark

model.

4. Discussion and Extensions

4.1. Strict Nash Equilibria

We now show that the characterization of strict Nash equilibria is sharper than that of sociable

equilibria.9

Proposition 4 In a strict Nash equilibrium (x∗, g∗), ḡ∗ is a weighted nested split graph where

active players have links of weight 1 and inactive players have at most one link with weight in

(0, 1).

9Note that all strict Nash equilibria are sociable, but the converse is not true.
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In a strict equilibrium, any player is neither indifferent between linking and public good provision,

nor between linking to different players. Hence, it is best to always exhaust a link to a contributor

before linking to another who provides less. As a result, weighted nested split graphs emerge.

Additionally, only the link to the lowest contributor among the out-links of an inactive player

can be weighted. Hence, players have at most one weighted link.

Figure 5 depicts a strict equilibrium for the same economy as in Figure 2. In this example, since

linking to player 1 is more profitable than linking to 2, every player establishes a link with a weakly

higher weight to 1 than to 2. As a result, now neighborhoods are nested, and inactive players only

have one weighted link.

This simple fact has some consequences for welfare, as inactive players have a different number

of links. As each core player provides a different amount of the public good than in the equilibrium

depicted in Figure 2, the weight of the links is different. In particular, player 6 has a weighted link

to 2, and 7 to 1. Since player 1 is providing more, and 2 less, than in the equilibrium in Figure 2,

now 6 links (and thereby consumes) less, and 7 more.

1 2

3 4 5 6 7

Player 1 2 3,4,5 6 7
bi 2 1.78885 1.4 .6
ai 1 .8 .49 .09
x∗i .37 .33 .1 0 0

links - g21 = 1 gi1 = gi2 = 1 g61 = 1, g62 = .68 g71 = .37

Figure 5: Example of a strict Nash equilibrium with fi(xi) = bi
√
xi, c = 1 and k = .3. Core players are in gray and

weighted links are dotted.

4.2. Linking technology

In the benchmark model, we assume that the technology to establish links is linear, in the sense

that the weight of a link between two players is equal to their investment in that link, up to the

maximal weight of 1. In this subsection, we consider a different link formation technology such that

only weighted links are established.

More formally, define by eij ≥ 0 player i’s investment in a link with player j. Then, gij = l(eij),

where the linking technology l(·) is an increasing and differentiable function such that l(0) = 0,

lime→∞ l(e) = 1 and l(e) < 1 for any e ∈ [0,∞). Let ei = (ei1, ..., ein), where eij ∈ [0,∞), for each

j ∈ N \ {i} and eii = 0, for all i ∈ N . Let ei ∈ Ei = [0,∞)n−1. Player i’s set of strategies is then

defined accordingly as Si = X × Ei.

11



Next we show that with this linking technology any non-empty sociable equilibrium yields a

weighted core-periphery graph.10

Proposition 5 If the linking technology is l(·), in a non-empty sociable Nash equilibrium (x∗, g∗),

ḡ∗ is a weighted core-periphery graph, where g∗iz = g∗jz for all i, j, z ∈ N with x∗i , x
∗
j ∈ (0, x∗z).

This proposition stresses that the characterization of the benchmark model is robust to different

linking technologies. However, there are some important differences. Indeed, the weight of a link

to players depends on their public good provision. So, when links are weighted and core players

provide a different amount of the public good, they might receive different spillovers from periphery

players. Hence, while players of a better type are still in more central positions in the network,

players in the core can be of different type, as shown in the following example.

Figure 6 depicts an equilibrium of an economy where l(e) = 1− exp(−e). In the example, both

players 1 and 2 receive links from players 3 and 4. However, the weights of the links are different,

so that players 1 and 2 receive different spillovers. Therefore, both of them are in the core even if

they have different public good consumption in isolation.

1 2

3 4

.289

.289
.194 .289

.194

Player 1 2 3 4
bi 2 1.9 1.5 1.4
ai 1 .9025 .5625 .49
x∗i .703 .62 .239 .166

Figure 6: Example of a sociable Nash equilibrium with linking technology l(e) = 1− exp(−e) when fi(xi) = bi
√
xi,

c = 1 and k = .5. Core players are in gray and the weight of a link is indicated on the corresponding edge.

4.3. Fixed cost in linking

In the benchmark model, we have assumed that the costs to bear in order to form a link are

directly proportional to the weight of that link. In some applications however, there might be fixed

costs associated with establishing a link, such as starting a phone call. These concerns are captured

in the following formulation: ∑
j∈Ni(g)

(K + kgij) , (2)

where K is the fixed component to be paid for each sponsored link independently of its weight.

Note that this formulation embeds both the unweighted and the weighted link model for k = 0 and

K = 0, respectively.

10If k > k̄, the empty network is the unique equilibrium, where k̄ = ca1 lime→0 l′(e).
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The characterization that results under (2) is the same as in a model of unweighted links

(Theorem 2 in Kinateder and Merlino, 2017). While active agents still only have links of weight

1, the fixed cost of linking might induce players to provide a little bit of public good rather than

establishing an additional link. The following corollary states these results.

Corollary 1 For any K > 0, in any sociable Nash equilibrium (x∗, g∗), ḡ∗ is a weighted core-

periphery graph where active players have links of weight 1. Furthermore, there exists an fi such

that player i is active and not connected to all players in the core C(ḡ∗).

This corollary stresses that better types might not be larger contributors and active agents do not

need to form a complete core-periphery graph; this second result also implies that there can be

isolated players. The example depicted in Figure 7 exhibits these results.

1 2

3 4 5

Player 1 2 3 4 5
bi 4.11825 4 4 3.1 1
ai 4.24 4 4 2.4025 .25
x∗i 2 1.6 .4 .4025 .25

Figure 7: Example of a sociable Nash equilibrium in the model with fixed costs of linking where all players are active
but g∗ is not a complete core-periphery graph when fi(xi) = bi

√
xi, c = 1, K = 1 and k = .5. Core players are in

gray.

Note, however, that the results of the model with K = 0 are robust to the introduction of a

small fixed cost of linking. As we show in the following corollary, there exists a threshold of the

fixed cost of linking below which active players behave as when K = 0, while inactive players link

and consume less than when K = 0.

Corollary 2 Consider the model where linking costs are given by (2). Take a strict Nash equilib-

rium (x∗, g∗) when K = 0. Then, there exists κ > 0 such that (x∗, g∗) is a strict Nash equilibrium

for any K < κ.

4.4. One-way flow of information

In some cases, information does not flow two-way, but to access it each player has to sponsor

a link, as on Twitter. Our model extends to this case, in which sponsoring a link only allows its

sponsor to access information.

Formally, the payoff function (1) is modified and becomes

Ui(x, g) = fi

(
xi +

∑
j∈N

gijxj

)
− cxi −

∑
j∈N

gijk, (3)
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i.e., information does not any more flow on the closure of ḡ, but rather on g. Then, we derive the

following:11

Corollary 3 A sociable Nash equilibrium (x∗, g∗) with one-way flow of information always exists,

and g∗ is either empty or a weighted core-periphery graph where active agents have links of weight

1. Moreover, there is n such that j ∈ P(g∗) for all j ≥ n in all equilibria (x∗, g∗).

This result shows that the characterization of Theorem 1 holds. In the core, players reciprocate

links, and periphery players link to core players. However, since periphery players in the one way-

flow model do not create spillovers, they can achieve a higher consumption than a player in the

core by complementing the spillovers they access with their own provision. As a result, contrarily

to Proposition 1, the best types need not be in the core.

For example, in Figure 8, the players’ demand for public good is sufficiently similar, and thus,

having those of the best type in the periphery constitutes an equilibrium.

1 2

3 4

Player 1,2 3,4
ai 1 .8
x∗i .2 .4

Figure 8: Example of a sociable Nash equilibrium in the model with one-way flow of spillovers where best types are
in the periphery when fi(xi) = bi

√
xi, c = 1 and k = .3. Core players are in gray.

4.5. Two-sided link formation

The equilibrium characterization we derived so far assumes that players can form links unilat-

erally. This assumption does not capture well situations where some investment by both players is

possible/required for a link between them to be established. In the following, we argue that our

characterization is robust to this extension as long as the complementarity between the two players’

investments is not too strong, or players can transfer resources to compensate for linking costs.12

Following Ding (2019), we can express the linking technology as

ḡij = 1

{(
1

2
eij +

1

2
eji

) 1
β

≥ 1

}
, (4)

11In the one-way flow model, we adapt the definition of the core as follows: for every i, j ∈ C(g), gij = gji = 1.
Hence, all links in the core are reciprocated.

12In case mutual consent is required to establish a link (Jackson and Wolinsky, 1996), players may ask for com-
pensation to share the public good they provide (Bloch and Jackson, 2007). Then, each equilibrium network under
one-sided linking is an equilibrium under two-sided link formation with transfers since the player proposing a link
under one-sided linking can always find transfers so that the link is accepted by the other party under two-sided
linking with transfers.
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where 1 is the indicator function and eij and eji are i’s and j’s investment in an undirected link

ḡij between them, for i, j ∈ N and eij ≥ 0. As in the benchmark model, the undirected network ḡ

resulting from a profile of investment eij for all i, j ∈ N with i 6= j, is the network that describes

spillovers across players in (1). The linking technology described in (4) corresponds to one-sided

linking if β →∞.

Ding (2019) shows that with (4), only one player would sponsor a link as long as β > 1. It is

then easy to see that a player links to j if xj ≥ 2
1
β k/c. Hence, any two players providing more than

2
1
β k/c are linked in equilibrium, and the same equilibrium characterization results for any β > 1.

5. Conclusion

In this paper, we find that allowing for weighted links in a local public good game with an

endogenous network yields a tight relationship between type, public good provision and network

position. Hence, players’ types can be inferred from their network position or their public good

provision, and vice versa. We thus believe, this model can be used to guide future empirical or

theoretical work in applications when the network is endogenous and links are weighted.
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Appendix

Proof of Lemma 1. Suppose that (x∗, g∗) is a Nash equilibrium and x∗i > 0. However, suppose

ad absurdum that x∗i +
∑

j∈N ḡ∗ijx
∗
j 6= ai. Then, a contradiction arises since player i can profitably

increase her payoff by increasing (decreasing) x∗i if f ′i(x
∗
i +

∑
j∈N ḡ∗ijx

∗
j ) is strictly larger (smaller)

than c = f ′i(ai), i.e., x∗i +
∑

j∈N ḡ∗ijx
∗
j is strictly smaller (larger) than ai. This concludes the proof

of Lemma 1. �

Proof of Theorem 1. First note that as fj(·) is twice continuously differentiable, strictly concave

and increasing, both f ′j(·) and its inverse exist for all j ∈ N . If k ≤ k, the following is an

equilibrium: x∗1 = a1, while g∗j1 = min{1, (f ′j)−1(k)/a1} and x∗j = 0 for all players j ∈ N \ {1};
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note that, since k ≤ ca1, and thus, f ′j(a1g
∗
j1) = k ≤ c = f ′j(aj), we get, by inverting f ′j(·),

a1g
∗
j1 = (f ′j)

−1(k) ≥ (f ′j)
−1(c) = aj . This equilibrium is also sociable, proving existence.

If a player j is active, there is no player i with x∗i > k/c such that ḡ∗ji < 1. If not, j would have

a profitable deviation by setting g′ji = g∗ji + ε accessing εx∗i additional public good at a cost εk

instead of εcx∗i . Furthermore, if a player j is active, there is no player i with x∗i = k/c such that

ḡ∗ji < 1. Indeed, by the reasoning above, ḡ′ji = ḡ∗ji + x∗j/x
∗
i would give i the same payoffs as the

current strategy. Hence, in a sociable equilibrium, either x∗j = 0 or ḡ∗ji = 1.

If there are j and i such that g∗ji = 1, then there is no z with x∗z ≥ x∗i and ḡ∗zi = 0. If not, since

g∗ji = 1, k ≤ cx∗i , z could reduce effort by x∗i linking to i and either strictly profit from the deviation,

or weakly so, contradicting that g∗ is sociable Nash equilibrium. Therefore, any i receiving active

in-links is connected to all j ∈ N such that x∗j ≥ x∗i . Hence, all i ∈ N with x∗i ≥ k/c form the core

C(ḡ∗).
Note that a player among those of the best type needs to be in the core; wlog, denote this player by

1. Suppose ad absurdum that there is i ∈ C(ḡ∗) with ai < a1 and 1 /∈ C(ḡ∗). As 1 needs to collect

more public good than any player in the core, we know that g∗1j = 1 for all j ∈ C(ḡ∗) (including i)

and x∗1 > 0. However, this implies that x∗i +
∑

j∈N ḡ∗ijx
∗
j ≥ x∗1 +

∑
j∈N ḡ∗1jx

∗
j = a1. By Lemma 1,

i would then have an incentive to reduce her provision of the public good, a contradiction. This

proves 1 ∈ C(ḡ∗). Hence, C(ḡ∗) 6= ∅.
As for p ∈ P(ḡ∗), two cases apply. If x∗p > 0, we have just shown that g∗pi = 1 for all i ∈ C(ḡ∗),
proving (ii). If x∗p = 0 and g∗pi > 0 for some i ∈ C(ḡ∗), the statement follows. Hence, ḡ∗ is a

core-periphery graph.

Finally, if z ∈ N with g∗zi = 0 for all i ∈ N \ {z}, x∗z = az. Suppose z deviates to g′zi = ε > 0

for i ∈ arg maxx∗j and x′z = x∗z − εx∗i . Then, the cost of attaining εx∗i goes from cεx∗i to kε. If

x∗i > k/c, the deviation is strictly profitable; if x∗i = k/c, the deviation is weakly profitable; hence,

g∗zi = 0 would not be part of a sociable equilibrium. This concludes the proof of Theorem 1. �

Proof of Proposition 1. Ad (i). By Lemma 1, any active player i ∈ N consumes ai. By Theorem

1.(ii), active players form a complete core-periphery graph where all links are of weight 1. Hence,

all players in the core attain the same consumption of the public good, and are of the same type.

Furthermore, Theorem 1.(ii) implies that core players consume more public good than all other

players. Hence, they have to be of type 1.

Ad (ii). For all i ∈ C(ḡ∗), x∗i ≥ k/c. If |C(ḡ∗)| > |a1|, then for some player j ∈ C(ḡ∗), aj < a1,

contradicting (i). If |C(ḡ∗)| > bca1/kc, then x∗i < k/c at least for some i ∈ C(ḡ∗), a contradiction.

Therefore, |C(ḡ∗)| ≤ min{bca1/kc, |a1|}.
Ad (iii). Suppose not and ad absurdum that

∑
i∈N x∗i 6= a1. By Lemma 1 and Theorem 1.(ii),

some best type either can improve her payoff by providing more public good if
∑

i∈N x∗i < a1, or

by providing less if
∑

i∈N x∗i > a1, a contradiction. This concludes the proof of Proposition 1. �
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Proof of Proposition 2. Suppose that ai > aj for any i, j ∈ N . We first show that in this case

x∗i ≥ x∗j . If i ∈ C(ḡ∗), then ai ≡ a1 and this trivially implies that j ∈ P(ḡ∗) and x∗i > x∗j . If

i, j ∈ P(ḡ∗), suppose ad absurdum that x∗i < x∗j . Then, given that x∗j > 0, ḡ∗jz = 1 for all z ∈ C(ḡ∗)
and since ai > aj also ḡ∗iz = 1. Hence,

∑
z∈N ḡ∗izx

∗
z =

∑
z∈N x∗z =

∑
z∈N ḡ∗jzx

∗
z. However, since

x∗i < x∗j , i receives less public good than j, and a contradiction arises with ai > aj . Therefore,

x∗i ≥ x∗j .

Now we show that
∑

z∈N ḡ∗iz ≥
∑

z∈N ḡ∗jz. If i ∈ C(ḡ∗) and j ∈ P(ḡ∗), then trivially
∑

z∈N ḡ∗iz ≥∑
z∈N ḡ∗jz. If i, j ∈ P(ḡ∗), suppose ad absurdum that

∑
z∈N ḡ∗iz <

∑
z∈N ḡ∗jz. This implies that∑

z∈N g∗iz <
∑

z∈N g∗jz. Since i, j link to the largest contributors in the core, this implies that∑
z∈N g∗izx

∗
z <

∑
z∈N g∗jzx

∗
z. Moreover, as we have just shown, x∗i ≥ x∗j . This yields a contradiction

with ai > aj , or it implies that either i (by linking more and providing less public good) or j (by

linking less) can deviate profitably. Hence,
∑

z∈N g∗iz ≥
∑

z∈N g∗jz.

Suppose now that ai > aj for any i, j ∈ N and x∗i ≥ x∗j > 0. Then, g∗iz = g∗jz = 1 for all z ∈ C(ḡ∗),
and thus i and j receive the same spillovers from the network. Then, x∗i > x∗j follows from ai > aj .

This concludes the proof of Proposition 2. �

Proof of Proposition 3. Ad (i). Suppose that x∗i > x∗j for some i, j ∈ C(ḡ∗). By Proposition

1.(i), ai = aj = a1 or equivalently,
∑

z∈N ḡ∗izx
∗
z + x∗i =

∑
z∈N ḡ∗jzx

∗
z + x∗j , which trivially implies∑

z∈N ḡ∗izx
∗
z <

∑
z∈N ḡ∗jzx

∗
z. Moreover, given that x∗i > x∗j ,

∑
z∈N ḡ∗iz ≥

∑
z∈N ḡ∗jz.

Ad (ii). Suppose that x∗i > 0 for i such that ai < a1 and ad absurdum that some j /∈ C(ḡ∗) with

aj = a1. Then, i, j ∈ P(ḡ∗) and thus ḡ∗ij = 0, while x∗i > 0 implies that g∗iz = 1 for all z ∈ C(ḡ∗),
and a contradiction arises with aj = a1 since any z ∈ C(ḡ∗) receives x∗i , while j does not, and by

Proposition 1.(i), az = a1.

Ad (iii). By Theorem 1.(ii) active players form a complete core-periphery graph, and thus, a player

j is active if, and only if,
∑

i∈C(ḡ∗) x
∗
i < aj . All players for whom aj ≤ mins∗∈SNE

∑
i∈C(ḡ∗) x

∗
i are

inactive, where SNE is the set of all sociable Nash equilibria. Then, picking the smallest such

i ≡ ñ, x∗i = 0 for all such i.

Ad (iv). Given x∗i = 0 and a∗i < a1 implies that g∗iz > 0 for some z ∈ C(ḡ∗). This in turn implies

that cx∗z ≥ k. Deriving i’s FOC shows that it is beneficial for i to sponsor weighted links until∑
z∈N g∗izx

∗
z = (f ′i)

−1(k) ≥ (f ′i)
−1(c) = ai given that x∗z ≥ k/c for all z ∈ C(ḡ∗). This concludes the

proof of Proposition 3. �

Proof of Proposition 4. Take a strict Nash equilibrium and a player p such that x∗p = 0, which

implies that p ∈ P(ḡ∗). Suppose ad absurdum that g∗pi ∈ (0, 1) and g∗pj ∈ (0, 1) for i, j ∈ C(ḡ∗),
where, wlog, x∗i > x∗j . Then, there is ε > 0 such that g′pi = g∗pi + ε and g′pj = g∗pj − ε is a profitable

deviation. Hence, for any j, p ∈ N , if g∗pj > 0, then g∗pi = 1 for all i ∈ N such that x∗i > x∗j . This

implies that ḡ∗ is a weighted nested split graph, concluding the proof of Proposition 4. �
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Proof of Proposition 5. First note that the result of Lemma 1 extends to the model with l(·)
as it does not depend on the linking technology. Note also that, following the same reasoning as

in Theorem 1, if ai > aj for i, j ∈ N , ηi(ḡ) > ηj(ḡ); otherwise, j would consume more public good

than i, a contradiction. Additionally, if g∗ij > 0 and there is a player z with x∗z > x∗j for i, j, z ∈ N ,

then ḡ∗iz > ḡ∗ij ; otherwise i would have a profitable deviation by reducing g∗ij while increasing g∗iz.

Also remember that in a sociable equilibrium all weakly profitable links are established.

A player i’s maximization problem is given by:

max
ei,xi

fi

(
xi +

∑
z∈N

ḡizx
∗
z

)
− c(xi)− k

∑
z∈N

eiz,

with xi = max{ai −
∑

z∈N ḡizx
∗
z, 0}.

If i is active, by Lemma 1, i’s consumption of the public good in any equilibrium is ai. Hence, small

changes in i’s spillovers translate into small changes of her provision, but not her consumption in

equilibrium. As a result, i’s maximization problem can be written as

max
ei

fi(ai)− c

(
ai −

∑
z∈N

ḡizx
∗
z

)
− k

∑
z∈N

eiz.

As by definition ḡij = max{l(eij), l(eji)} for any j ∈ N \ {i}, the FOC with respect to eij gives

∂max{l(eij), l(eji)}
∂eij

cx∗j ≤ k, (A-1)

with equality if e∗ij > 0. Indeed, as k > 0, if l(eij) ≤ l(eji), ḡij is determined by l(eji), and the

LHS of (A-1) is null; hence, in equilibrium e∗ij = 0. If instead l(eij) > l(eji), ḡij is determined by

l(eij); since l(e) < 1 for any finite e, l(1) is not a possible corner solution; as a result, i will invest

in this link up to the point where the marginal cost equals the marginal benefit. This implies that

g∗ij = g∗zj for all i, j, z ∈ N with x∗j > x∗i , x
∗
z > 0.

If i is inactive, i’s maximization problem can be written as

max
ei

fi

(∑
z∈N

ḡizx
∗
z

)
− k

∑
z∈N

eiz.

Since i is inactive, in equilibrium no player links to i, i.e., l(eji) = 0 for all j ∈ N . Hence, the FOC

with respect to eij gives

f ′i

(∑
z∈N

gizx
∗
z

)
∂l(eij)

∂eij
x∗j ≤ k, (A-2)
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with equality if eij > 0. Indeed, if j’s provision is not large enough with respect to the linking cost

k, the LHS is lower than the RHS, and i would find it optimal to set eij = 0. If instead eij > 0, eij

is set for marginal cost to be equal to the marginal benefits of that link, given that l(eij) < 1 for

any finite eij .

To prove that ḡ∗ is a weighted core-periphery graph, it is left to prove that, if there are players i

and j such that g∗ij > 0, then there is no player z ∈ N with x∗z ≥ x∗j > 0 and ḡ∗jz < ḡ∗ij . To see

this, comparing (A-1) and (A-2) reveals that ḡ∗jz ≥ ḡ∗ij if ḡ∗jz > 0. Furthermore, if ḡ∗jz = 0 and

x∗z > x∗j > 0, j could set e′jz = ε, thereby reducing public good provision by g(ε)x∗z; by (A-1), there

is an ε > 0 for which this deviation is strictly profitable, in which case, in a sociable equilibrium,

e′jz > 0. If instead x∗z = x∗j > 0 and ḡ∗jz = 0, the deviation is weakly profitable; hence, in a sociable

equilibrium, either x∗j = 0 or ḡ∗jz > 0. These arguments also imply that g∗iz = g∗jz for all i, j, z ∈ N
with x∗i , x

∗
j ∈ (0, x∗z). This concludes the proof of Proposition 5. �

Proof of Corollary 1. Take a sociable Nash equilibrium (x∗, g∗), and wlog, assume i < j if

x∗i ≥ x∗j . First, note that if a player i has a weighted link to j, then i is inactive. To show this,

suppose that i has a weighted link to j and i is active. Lemma 1 implies xi +
∑
l∈N

ḡilx
∗
l = ai. Then,

i linking with a weight g∗ij < 1 implies that x∗j ≥ K/(cg∗ij) + k/c > k/c. On the contrary, setting

g′ij and x′i such that x′i +
∑

i∈Ni(g′) g
′
ijx
∗
j = ai is not profitable if x∗j < k/c, a contradiction. Hence,

either i has no weighted links, or i is inactive. Following similar arguments as in Theorem 1, g∗ is

a weighted core-periphery graph where active players have links of weight 1.

Second, if g∗ is empty, the statement trivially follows. Otherwise, the most profitable link is to

player 1. Now consider a scalar α ∈ R+ and introduce a player z such that Uz(x, g) = αf1

(
xz +∑

j∈N
ḡzjxj

)
− cxz −

∑
j∈Nz(g)

(K + kgzj); i.e., z has the same benefits as 1, but scaled down by α.

In particular, assuming that α is low enough that when gz1 = 1, z is inactive, z is isolated if

αf1(gz1x
∗
1) − kgz1 − (αf1(az)− caz) < K, where gz1 ∈ (0, 1] is the optimal weight of the link

to 1 chosen by z. Using the envelope theorem, the derivative of the LHS with respect to α is

f1(gz1x
∗
1) − f1(az) > 0, so that the LHS is continuously differentiable and increasing in α, and

equal to 0 if α = 0. Hence there is α > 0 such that z is isolated for all α ∈ (0, α). Following a

similar argument, if x∗2 ≥ k/c and x∗2 < x∗1, there is α > 0 such that g∗z1 = 1 but g∗z2 = 0 for all

α ∈ [α, α). This concludes the proof of Corollary 1. �

Proof of Corollary 2. Since (x∗, g∗) is a strict Nash equilibrium when K = 0, for any i ∈ C(ḡ∗)
and j ∈ N such that x∗i > 0 and g∗ji = 1, x∗i > k/c. Suppose now K > 0 and denote by (x′, g′)

an equilibrium. Then, note first that if g′ij = g∗ji = 1, x′i = x∗i for any i, j such that x∗i , x
∗
j > 0,

as K does not affect the marginal cost of consuming the public good directly or indirectly. As

x∗i > k/c, there exists κi such that x∗i = (κi + k)/c so that x∗i > (K + k)/c for any K < κi and

g′ji = 1. For a player j such that x∗j = 0, consider j’s least profitable link in g∗, call it g∗jz. Then,
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g′jz solves x′zf
′
j(
∑

i∈N x′i) = k. As this condition does not depend on K and x′i = x∗i for any player

in i ∈ C(ḡ∗), g∗jz = g′jz if g′jz > 0. Finally, g′jz > 0 if

x∗z

(
1− K

c(f ′)−1

(
k

x∗z

))
>
k

c
. (A-3)

Clearly the condition is satisfied for K = 0. Furthermore, the LHS is strictly decreasing in K.

Hence, there exists κj such that (A-3) is satisfied for any K < κj .

Define κ = mini∈C(ḡ∗),j∈N |x∗j=0{κi, κj}. As a result, for any K < κ, (x∗, g∗) = (x′, g′). This

concludes the proof of Corollary 2. �

Proof of Corollary 3. First we show that a non-empty network is a weighted core-periphery

graph. If a player j is active, there is no player i with x∗i > k/c such that g∗ji < 1. If not, as in

the two-way flow model, j would have a profitable deviation by setting g′ji = g∗ji + ε accessing εx∗i
additional public good at a cost εk instead of εcx∗i . Since x∗i > k/c, the deviation is profitable. If

instead x∗i = k/c, g∗ji < 1 is not part of a sociable equilibrium. So all players producing more than

k/c are linked with each other and form the core. Periphery players link to the highest producers,

so that a sociable Nash equilibrium network is a weighted core-periphery graph where active players

have links of weight 1.

Finally, given any equilibrium (x∗, g∗), player j is in the periphery if aj−
∑

i∈C(g∗) x
∗
i < k/c. Define

by NE the set of all Nash equilibria. Then, for all j ≥ n, j ∈ P(g∗) given any equilibrium for which

aj −mins∗∈NE

∑
i∈C(g∗) x

∗
i < k/c. This concludes the proof of Corollary 3. �
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