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A B S T R A C T

This work presents a constitutive model for eutectoid steels based on their two-phase lamellar microstructure.
The model accounts for the individual behaviour of both ferrite and cementite, with perfect interphase adhesion
assumed. It considers anisotropic hardening mechanisms in ferrite derived from the lamellar structure of
pearlite while ignoring the crystal structure of either phase. The model also accounts for the evolution of
orientation and spacing of lamellae under directional deformation, along with the evolution of internal stress
distribution in both phases. Due to its simplicity, the model has very few calibration parameters but is still able
to reproduce complex strain paths and loading conditions with excellent accuracy. The model was compared
with tensile, compression and torsion tests from a 13-pass wire drawing series (up to drawing strains of 2.7)
and reproduced accurately the mechanical response under any loading condition. The robustness of the model
lies in the fact that it is able to recreate the evolution of internal stresses built in cementite and ferrite. Such
internal stress evolution was confirmed to reproduce accurately the stress partitioning observed in neutron
and X-ray diffraction tests reported in literature. Moreover, the model contributes to the understanding of the
rapid broadening of cementite diffraction peaks observed during in-situ tensile tests of patented wires.
1. Introduction

Fully pearlitic eutectoid steels, composed of about 0.8 mass% C plus
minor amounts of alloying elements, may offer an excellent compro-
mise of mechanical strength and ductility and are widely employed
for rails, pre-stressing tendons and high-strength wires. Pearlite, the
product of the eutectoid decomposition of austenite, is a two-phase
aggregate of alternating lamellae of 88 vol.% ferrite and 12 vol.% Fe3C
cementite. While ferrite, bcc iron with some elements in solid solution,
is ductile above a critical temperature, the bulk orthorhombic iron car-
bide cementite is hard and brittle. The eutectoid transformation from
austenite to pearlite occurs by either slowly cooling down austenite
below 727 ◦C or isothermal treating austenite in the range between
the eutectoid temperature and the start of bainite formation, about
550 ◦C [1–3]. Pearlite is organized in bi-crystalline domains (termed
blocks or nodules) constituted of several sub-domains (colonies) whose
lamellae share a common spatial orientation. A non-directionally grown
as-transformed pearlitic structure, originated from a weakly textured
austenite, presents colonies with randomly oriented lamellae and shows
mechanical isotropy on the macroscopic length scale. Typically, the as-
transformed pearlitic spacing falls in the 50–600 nm range, depending
on the transformation temperature (higher undercooling with respect
to the equilibrium eutectoid temperature results in smaller spacing).
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Thus, the thicknesses of pearlitic cementite lamellae are of nanometric
size and, embedded in the ferrite lamellae, behave in a ductile manner
when pearlite is plastically deformed, particularly in the case of fine
pearlites. The size of the colonies is typically an order of magnitude
larger than the interlamellar spacing and the influence of the size of
both colonies and blocks is of secondary importance for the plastic
properties of pearlite with respect to the influence of the interlamellar
spacing.

When plastic deformation is applied, e.g., during cold wire drawing,
individual colonies stretch along the principal direction of deformation
and their pearlitic lamellae reorient accordingly. These progressive
lamellar reorientation and stretching are more noticeable if the di-
rectional deformation increases to large strains through a monotonic
path (e.g., uniaxial deformation, simple shear, even compression, etc.)
and are associated to a shrinkage of the average interlamellar spacing.
Such refinement of the average pearlitic spacing has a significant
strengthening effect.

The experimental values for the yield and flow stress (after a given
plastic pre-strain) of fully pearlitic eutectoid carbon steel may be repre-
sented by a linear function of either the inverse of the true interlamellar
spacing or its square root. Still today, there is much controversy on the
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value of the inverse exponent (−1 or −1/2) and the related physical
explanation behind each of them [4–9]. Statistical analyses of indi-
vidual experimental data sets do not provide a clear support for the
validity of the −1 or −1/2 exponent. Similarly, statistical analyses
integrating several data sets with different chemical composition of
the steels, different definitions of the spacings and their measurement
methods and different range of the spacings values (e.g., Badeshia
and Chintha [9]) lead to conclusions about the preferred strength vs.
spacing relationships, in our opinion, questionable.

From a physical point of view, pulling threading dislocations in the
ferrite confined between the adjacent assumed impenetrable cementite
lamellae (through the dislocation density present in the lamellar ferrite)
is necessary for a significant plastic strain. It approximately requires
exceeding a critical shear stress, 𝜏bow, for semicircular bowing of the dis-
location line on its slip plane limited by the two contiguous cementite
plates [10–12],

𝜏bow = 𝐴𝐺𝑏
2𝜋𝑠eff

[

ln
( 𝑠eff
𝑏

)

+ 𝐵
]

(1)

here 𝐴 is a factor of the order of unity that depends on the character
f the dislocation, 𝐺 = 64 GPa is the shear modulus appropriate for
he calculation of the line energy of a 1∕2 ⟨111⟩ screw dislocation in
𝛼Fe [13], 𝑏 = 0.248 nm [14], 𝑠eff is the width of ferritic lamellae on
its slip plane between its two adjacent cementite plates and 𝐵 = 0.68
is a parameter related to the energy of the core of the dislocation.
Without any fitting parameter, the resolved shear stress given by Eq. (1)
multiplied by an orientation factor 𝑀 ≈ 3, the Taylor factor commonly
used for weakly textured cubic polycrystalline materials, reproduces
fairly well the tensile flow stresses of both as-transformed randomly
oriented and highly oriented wire drawn pearlite if the strength contri-
bution of cementite to the composite is in both cases accounted for [6].
Moreover, high strength, fine pearlite is a particular case of nanolay-
ered material, and the stress for ‘‘confined layer slip’’, CLS, given by
Eq. (1), is currently accepted as a main contribution to the strength of
nanolayered metal–metal or metal–ceramic materials [15,16].

After large plastic strains (𝜖eq > 2), signs of cementite dissolution are
detected because of the dragging of C atoms from the cementite lamel-
lae by the ferrite dislocations. Volume fraction of cementite lamellae
progressively decreases and the carbon content in the ferrite lamel-
lae concurrently increases. At very large strains the lamellar pearlite
transforms progressively in a structure of nanometric subgrains/grains
with C enriched boundaries which are stabilized and strengthened by
C segregation [17–20]. However, in wire drawing, the strengthening
progresses at least up to 𝜖eq = 6.5, with the strength reaching 7 GPa.

A plethora of multiscale microstructure-based models intended to
simulate the stress–strain behaviour of pearlite up to large strains have
been published. Refs. [21–34] are only some of them. They span from
continuum mechanical models assuming isotropic behaviour of the two
constituents of pearlite and simple empirical relationships for the ferrite
flow stress vs. its average lamellar spacing evolution to crystal plasticity
models of ferrite coupled to FEM (CPFEM) accounting for the evolution
of both the spatial orientation of the lamellae and the evolution of
the crystallographic orientation of ferrite in each colony, incorporating
dislocation density equations and interaction hardening laws for the
ferrite slip systems. The crystal plasticity of cementite is not sufficiently
known for its incorporation into the models. Finally, it is worth men-
tioning that several molecular dynamics (MD) simulations of pearlite
plastic behaviour have also been made [35–40]. They are invaluable for
understanding the nanostructure of pristine ferrite–cementite interface,
their function at first deformation stages for interfacial dislocation
emission, for characterizing the slip systems in cementite or for showing
the effect of ferrite dislocations in the activation of slip dislocations in
the cementite. But, of course, current possibilities of MD for pearlite
simulations are still limited to very small scale, e.g., to cell calculation
sizes of a cementite–ferrite sandwich only several tens of nm thick.

Obviously, if one wants to perform simulations representative of
the behaviour of relatively large volumes of pearlitic steel, e.g., to be
2

incorporated in a FEM code for the detailed assessment of multi-pass
forming processes like wire drawing or rolling up to large strains, a
compromise must be found in the choice of the constitutive model
of the material. It must be simple enough to allow for performing a
huge amount of computations in a short time, but it cannot be too
simple: at least, it must capture the evolution of the microstructure
of the lamellar composite, the mechanical evolution of its two phases
and of the composite itself and the development of the field of in-
ternal stresses at different scales: short range (intra-colony stresses,
with distinction of each phase stresses), medium range (single colony-
averaged stresses) and long range (macroscopic, stresses averaged in
regions of the order of the whole dimensions of the sample, involving
many colonies). In this paper, we present a model that offers a good
description of microstructural features (and their evolution), combined
with the capability of simulating large systems, complex problems up to
large deformations with reasonable computational effort. In the model,
based on a previous work by Alkorta et al. [41], pearlite is represented
as an aggregate of colonies tessellated in elements which, in the un-
strained state, share a similar spatial orientation of their lamellae. Each
element of pearlite is a ferrite–cementite composite characterized by
its interlamellar distance, the spatial orientation of its lamellae and
the stress/strain states of its two phases as internal state variables (all
of them uniform in the element). Elastic isotropy of both composite
phases has been assumed. Ferrite lamellae are considered plastically
anisotropic, its plastic constitutive law being mainly controlled by their
thickness. Cementite lamellae are treated as elastic perfectly-plastic.
The interlamellar spacing and lamellar orientation of each element
evolve with applied deformation as in the model developed by Peng
et al. [22]. The lamellae are re-oriented with an areal-affine assumption
as used by Larijani et al. [28], thus reducing the dense meshing
requirement present in CP-FEM approaches. As presented in this paper,
the applicability of the model is limited to the range of plastic strains
where strain-induced cementite decomposition can be neglected. The
ability of the current model to predict the microstructural evolution of
eutectoid steels during wire drawing was preliminarily confirmed by
Alkorta et al. [41] and will be the subject of a more detailed analysis
in a future work.

The paper is structured as follows. First, a detailed description of
the mechanical model used for each pearlitic phase is given, pointing
out all hardening mechanisms and microstructural properties consid-
ered. Then the numerical implementation of the model is described,
including the incremental deformation algorithm employed for each
phase and the compatibility conditions enforced for the elastoplastic
behaviour of the composite. Finally, the accuracy and reliability of the
model are tested by performing finite element simulations with a RVE
and comparing these results with experimental data.

2. Mesoscopic model of pearlite

2.1. Modelling of pearlitic ferrite

At room temperature or in its neighbourhood and at strain rates
roughly in the range of 10−4 s−1 to 104 s−1, plastic deformation of
pearlitic ferrite is carried out by dislocation glide. The long-range glide
of dislocation lines (in the sense of large gliding distances relative to ef-
fective spacing, 𝑠eff ) confined on their ferritic slip planes between their
two adjacent cementite lamellae requires, in the absence of any local
internal stress state, reaching a critical shear stress resolved on their slip
plane and in their slip direction, the CRSS. Several sources of resistance
to dislocation glide contribute to the CRSS: a friction-like stress, 𝜏𝑓 ,
strain independent, lumping-up the Peierls stress and the hardening
contribution of alien atoms in solid solution; the hardening coming
from the strain dependent dislocation density stored in the lamella
of ferrite, 𝜌, approximately proportional to

√

𝜌 (Taylor equation), 𝜏𝜌;
the also strain dependent overstress required for critically bowing the
dislocation line in its situation of confined slip, 𝜏 , dependent on the
bow
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𝑃𝑃
effective interlamellar spacing as per Eq. (1). Assuming additivity for
the superposition of these three terms, the CRSS is

𝜏CRSS = 𝜏f + 𝜏𝜌 + 𝜏bow (2)

A rigorous treatment of the plasticity of pearlitic ferrite demands a
crystal plasticity approach with updating, after each strain increment,
the crystal orientation, the spatial orientation of the lamellae, the
effective spacing of each slip system and the dislocation density of the
ferrite of each volume element of pearlite. The overlap of the crystallo-
graphic anisotropy with the anisotropy of structural origin significantly
modifies the anisotropy of pearlitic ferrite with respect to that of a free
ferrite crystal [42]. Simulations of deformation of pearlite considering
such overlap have been made (e.g., Watté et al. [21], Van Houtte
et al. [43], with the simplifying hypothesis of homogeneous deforma-
tion of the colonies of each RVE). However, for performing simulations
of multi-pass processes of large size samples up to large strains while
keeping good track of the evolution of mechanical properties including
internal stresses of short and long range, we are obliged to renounce
to a too detailed constitutive model for the sake of computational
economy. For instance, instead of explicitly considering the evolution of
dislocation densities, for the dislocation hardening term we make use
of the Voce hardening equation, which connects with the dislocation
density evolution through the Kocks–Mecking relationship [44,45]:

𝜏𝜌 = 𝜏sat +
(

𝜏0 − 𝜏sat
)

exp
(

−𝛽𝜖𝑝
)

(3)

where 𝜏0, 𝜏sat and 𝛽 are material parameters representing the strength
at zero plastic strain originated by an initial dislocation density, a
saturation strength (corresponding to a saturation of the dislocation
density at large strains) and the ratio of the strain hardening rate
to

(

𝜏sat − 𝜏0
)

at zero plastic strain, respectively. These parameters are
calibrated against experimental results. There are alternative models
in the literature that provide a better description of strain hardening
for a wider range of dislocation densities, such as that of Bouaziz
et al. [46,47]. However, in this model we have considered Voce’s model
for its simplicity.

Furthermore, for our model we have assumed that the essential
effect of the fine lamellar structure in the pearlitic plastic anisotropy
is to promote shear deformation on the lamellar plane. A ‘‘deck of
cards’’ deformation mode (firstly proposed by Langford [5]) is favoured
when pearlite colonies are solicited by stress states with a large shear
stress component on a soft lamellar plane. The prevalence of the
‘‘deck of cards’’ deformation mode has been many times experimentally
observed: e.g., in colonies with lamellar plane tilted near 45◦ from the
stress axis under tensile or compressive axial stresses, or in axially ori-
ented colonies under torsion [48–54]. Therefore, we have adapted the
orthotropic plastic yield criterion of Hill [55] to reproduce the ‘‘deck
of cards’’ deformation mode in suitably oriented pearlitic elements by
assigning adequate values to the parameters of the criterion inspired on
the dependence of the CRSS for glide of dislocations on the effective
interlamellar spacing, 𝑠eff , Eqs. (1) and (2). Fig. 1 shows a pearlitic
element with its reference system, where the 3 axis is perpendicular to
the lamellae. For the sake of simplicity, we will assume planar isotropy
on the lamellar plane (rotational symmetry of the yield criterion around
axis 3). Under an applied shear stress 𝜏12 we will assume the element
will flow in shear, 𝛾12, once the CRSS given by Eq. (2) with 𝑠eff = 𝑠,
is reached (see Fig. 2). It amounts to assume that plastic flow occurs
by fictitious dislocations gliding on fictitious slip planes normal to axis
2, with a fictitious Burgers vector parallel to axis 1. Under any shear
parallel to the lamellar plane, e.g., 𝜏13 or 𝜏23, the lamellar plane is
considered a fictitious slip plane for dislocations of fictitious Burgers
vector on the slip plane and the glide of dislocations is not constrained
by any interlamellar distance. In the absence of any dislocation density
in the ferritic lamellae, the glide of such dislocations would only be
confined by the boundary of the colony to which the element pertains.
Any initial or strain-induced dislocation density will impose a disloca-
3

tion mean free path, 𝑐, and we will consider 𝑠eff = 𝑐 for calculating the
Fig. 1. Reference system of pearlitic colony.

critical bowing stress contribution to the CRSS in this case. According
to experimental observations, the dislocation density in the pearlitic
lamellae is not homogeneously distributed and the dislocation density
is strain dependent. We have considered an explicit dependence of 𝑐
with the von Mises equivalent strain, 𝜖𝑝 through:

𝑐
(

𝜖𝑝
)

= 𝐾
𝜖𝑚𝑝

(4)

for 𝜖𝑝 > 0, where 𝐾 and 𝑚 are material constants that are calibrated
with the experimental tests. Fig. 3 shows the evolution of 𝑐 with plastic
strain after the calibration procedure. The evolution is aligned with
what is observed in literature [56].

As commented above, plastic anisotropy in ferrite has been de-
scribed using the anisotropic plasticity model proposed by Hill [55]
as an extension of the von Mises yield criterion. From now on, we
will combine the index convention for stress (and strain) tensors
with Voigt’s notation, which is very suitable for the description of
numerical algorithms. In Voigt’s notation, the stress tensor, 𝜎𝑖𝑗 , is
formulated as a six-component vector that will be denoted as 𝜎𝜎𝜎 =
[

𝜎11, 𝜎22, 𝜎33, 𝜏12, 𝜏23, 𝜏31
]𝑇 . With this convention, the yield locus can be

written as

𝛼𝑓 = 𝛼𝜎eq − 𝛼𝜎𝑦 =
√

1
2𝜎𝜎𝜎

𝑇𝑃𝑃𝑃 𝛼𝜎𝜎𝜎 − 𝛼𝜎𝑦 = 0 (5)

The left superscript and subscript 𝛼 denotes the ferritic phase, 𝜎𝑦 is a
certain reference ‘‘yield stress’’ and 𝑃𝑃𝑃 𝛼 is a tensor that determines the
anisotropy of yield. As we have assumed planar isotropy of the criterion
on the lamellar plane, normal to axis 3, if we denote �̄�𝑖𝑗 the yield
stresses in the corresponding stress components, then �̄�11 = �̄�22 =

√

3𝜏12
and 𝜏13 = 𝜏23. Then, 𝑃𝑃𝑃 𝛼 is expressed as

𝑃 𝛼 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 𝑁 − 2 −𝑁 0 0 0
𝑁 − 2 2 −𝑁 0 0 0
−𝑁 −𝑁 2𝑁 0 0 0
0 0 0 6 0 0
0 0 0 0 6𝑀 0
0 0 0 0 0 6𝑀

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6)

where 𝑀 = 𝜏212∕𝜏
2
23 = 𝜏212∕𝜏

2
13 and 𝑁 = �̄�211∕�̄�

2
33 = �̄�222∕�̄�

2
33. From the

previous considerations on the yield under the shear stress components,
in combination with the equalities derived from the assumed planar
isotropy, we have defined the yield criterion, out of the values of
the parameters 𝑀 and 𝑁 , which requires the evaluation of the yield
stress under the tensile or compressive 𝜎33 stress component; we have
assumed a fictitious slip plane rotated 45◦ about the axis 1 or 2 and a
fictitious slip direction also inclined 45◦ with the axis 3 (see Fig. 2(b)),
which leads to 𝜎33 = 2𝜏CRSS(𝑠eff =

√

2𝑠), with 𝜏CRSS given by Eq. (2).
The strain dependent 𝑁 and 𝑀 parameters of the pearlitic elements are
updated after each strain increment.
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𝑃𝑃
Fig. 2. Effective dislocation segments lengths for different glide systems.
-

𝑛𝑛

𝜎𝜎

𝜎𝜎

𝜎𝜎
Fig. 3. Evolution of effective dislocation in-plane mean free path, 𝑐, as a function of
applied equivalent strain.

2.2. Modelling of pearlitic cementite

Cementite is considered mechanically isotropic with elastic perfectly
plastic behaviour. Thus, the counterparts of Eqs. (5) and (6) for cemen-
tite are obtained by taking 𝑀 = 𝑁 = 1, i.e.,

𝜃𝑓 = 𝜃𝜎eq − 𝜃𝜎𝑦 =
√

1
2𝜎𝜎𝜎

𝑇𝑃𝑃𝑃 𝜃𝜎𝜎𝜎 − 𝜃𝜎𝑦 = 0 (7)

where the left superscript and subscript 𝜃 denotes cementite phase and

𝑃 𝜃 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8)

With regard to the elastic behaviour, we will consider identical
isotropic elastic properties for cementite and ferrite with a Young’s
modulus of 𝐸 = 200 GPa and a Poisson’s ratio of 𝜈 = 0.3.

2.3. Ferrite–cementite interface

Perfect adhesion between ferrite and cementite is assumed in this
model. Using the reference system depicted in Fig. 1 (note that 3 is
the direction normal to the interface), the continuity and equilibrium
4

conditions at the interface can be defined in terms of the Cauchy stress
tensor, 𝜎𝜎𝜎, and the velocity gradient tensor, 𝐿𝐿𝐿, as
𝛼𝜎13 = 𝜃𝜎13; 𝛼𝜎23 = 𝜃𝜎23; 𝛼𝜎33 = 𝜃𝜎33 (9)
𝛼𝐿11 = 𝜃𝐿11; 𝛼𝐿21 = 𝜃𝐿21; 𝛼𝐿12 = 𝜃𝐿12; 𝛼𝐿22 = 𝜃𝐿22 (10)

where 𝛼 and 𝜃 denote, respectively, ferrite and cementite phases.

2.4. Evolution of interlamellar spacing and orientation

Finally, the orientation of the lamellae is defined by their unit
normal vector 𝑛𝑛𝑛 (2 independent state variables). The evolution of 𝑛𝑛𝑛 and
the interlamellar spacing, 𝑠, with deformation is directly determined by
the deformation gradient tensor, 𝐹𝐹𝐹 , as follows:

𝑛 =
𝐹𝐹𝐹−𝑇𝑛𝑛𝑛0
‖

‖

𝐹𝐹𝐹−𝑇𝑛𝑛𝑛0‖‖
(11)

𝑠 =
𝑠0

det (𝐹𝐹𝐹 ) ‖
‖

𝐹𝐹𝐹−𝑇𝑛𝑛𝑛0‖‖
(12)

where 𝑛𝑛𝑛0 is the unit normal vector to the lamella and 𝑠0 is the initial
lamellar spacing. Note that det (𝐹𝐹𝐹 ) = 1 if the elastic change of volume
can be neglected.

3. Numerical implementation of mesoscopic model

3.1. Implicit backward Euler integration algorithm

For the moment we will assume a single-phase elastic–plastic mate-
rial with the following anisotropic yield locus

𝑓 = 𝜎eq − 𝜎𝑦 =
√

1
2𝜎𝜎𝜎

𝑇𝑃𝑃𝑃𝜎𝜎𝜎 − 𝜎𝑦 = 0 (13)

Assuming an additive decomposition of the incremental strain in its
elastic and plastic components, 𝛥𝜖 = 𝛥𝜖𝜖𝜖𝑒 + 𝛥𝜖𝜖𝜖𝑝, the corresponding step
from the stress 𝜎𝜎𝜎𝑜 at the beginning of the increment to the stress 𝜎𝜎𝜎𝑛 at
the end of an increment can be calculated as

𝜎𝑛 = 𝜎𝜎𝜎𝑜 +𝐶𝐶𝐶𝛥𝜖𝜖𝜖𝑒 = 𝜎𝜎𝜎𝑜 +𝐶𝐶𝐶
(

𝛥𝜖𝜖𝜖 − 𝛥𝜖𝜖𝜖𝑝
)

= 𝜎𝜎𝜎𝐵 −𝐶𝐶𝐶𝛥𝜖𝜖𝜖𝑝 (14)

where 𝐶𝐶𝐶 is the elastic stiffness tensor and 𝜎𝜎𝜎𝐵 = 𝜎𝜎𝜎𝑜+𝐶𝐶𝐶𝛥𝜖𝜖𝜖 is a trial stress
that assumes elastic behaviour during the increment. If 𝑓

(

𝜎𝜎𝜎𝐵
)

≤ 0 the
material deforms elastically in the incremental step, i.e., 𝛥𝜖𝜖𝜖𝑝 = 0 and
𝜎𝑛 = 𝜎𝜎𝜎𝐵 . Otherwise, plastic deformation has to be accounted for. The
flow rule in Hill’s plasticity is defined as:

𝛥𝜖𝜖𝜖𝑝 = 𝛥𝜆
𝜕𝑓
𝜕𝜎𝜎𝜎

= 𝛥𝜆
2𝜎eq

𝑃𝑃𝑃𝜎𝜎𝜎𝑛 (15)

Then from Eqs. (14) and (15) we obtain

𝜎𝑛 =
(

𝐼𝐼𝐼 + 𝛥𝜆 𝐶𝐶𝐶𝑃𝑃𝑃
)−1

𝜎𝜎𝜎𝐵 = 𝐵𝐵𝐵−1𝜎𝜎𝜎𝐵 (16)

2𝜎eq
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where 𝐼𝐼𝐼 is the 6 × 6 identity matrix. 𝜎𝜎𝜎𝑛 is solved iterating over Eqs. (13)
and (16) using a Newton–Raphson integration scheme. However, this
approach is computationally costly since it requires the calculation of
the inverse of 𝐵, a 6 × 6 matrix, at every Newton iteration. In this work

e circumvent this problem by transforming the stress–strain fields as
hown in the following section.

.1.1. Transformation of stress and strain fields
From now on, we will denote the variables at the transformed

pace as �̂�𝑥𝑥. The proposed transformation stands on the observation
that both isotropic elastic stiffness tensor and Hill’s anisotropy tensor

(as defined in Eq. (6)) are both diagonalizable and share the same
igenvectors, i.e.:

=𝑄𝑄𝑄�̂�𝐶𝐶𝑄𝑄𝑄𝑇 (17)

=𝑄𝑄𝑄�̂�𝑃𝑃𝑄𝑄𝑄𝑇 (18)

ith

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
√

3
− 1

√

2
− 1

√

6
0 0 0

1
√

3
1
√

2
− 1

√

6
0 0 0

1
√

3
0 2

√

6
0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(19)

and �̂�𝐶𝐶 and �̂�𝑃𝑃 being diagonal matrices with the following diagonal
omponents:

̂𝑖 = diag
(

�̂�𝐶𝐶
)

= eig (𝐶𝐶𝐶) = [3𝜆 + 2𝜇, 2𝜇, 2𝜇, 𝜇, 𝜇, 𝜇] (20)

𝑃𝑖 = diag
(

�̂�𝑃𝑃
)

= eig (𝑃𝑃𝑃 ) = [0, 4 −𝑁, 3𝑁, 6, 6𝑀, 6𝑀] (21)

where, 𝜆 and 𝜇 are Lame’s elastic constants (isotropic elasticity). If we
consider the following transformation for strains and stresses

�̂� =𝑄𝑄𝑄𝑇𝜎𝜎𝜎 (22)

𝜖𝜖𝜖 =𝑄𝑄𝑄𝑇 𝜖𝜖𝜖 (23)

then Eqs. (13) and (16) yield

𝑓 =
√

1
2 �̂�𝜎𝜎

𝑇 �̂�𝑃𝑃�̂�𝜎𝜎 − 𝜎𝑦 =

√

√

√

√

6
∑

𝑖=1

𝑃𝑖�̂�2𝑖
2

− 𝜎𝑦 = 0 (24)

nd

̂ 𝑛 =
(

𝐼𝐼𝐼 + 𝛥𝜆
2𝜎eq

�̂�𝐶𝐶�̂�𝑃𝑃
)−1

�̂�𝜎𝜎𝐵 = �̂�𝐵𝐵
−1
𝜎𝜎𝜎𝐵 (25)

with �̂�𝐵𝐵 being also a diagonal matrix which can be easily inverted.
inally, combining Eqs. (24) and (25) we get

=

√

√

√

√

6
∑

𝑖=1

𝑃𝑖�̂�2𝐵𝑖
2�̂�2

𝑖

− 𝜎𝑦 = 0 (26)

Note that �̂�𝑖 = �̂�𝑖 (𝛥𝜆) and 𝜎𝑦 = 𝜎𝑦 (𝛥𝜆). An iterative Newton–Raphson
procedure has been applied to solve Eq. (26).

3.2. Application to pearlitic model

The single-phase elastic–plastic model must be adapted to the two-
phase pearlitic model where certain constraints related to the conti-
nuity of the ferrite–cementite interface (perfect adhesion criterion, see
Section 2.3) must be addressed.

The overall velocity gradient, 𝐿𝐿𝐿, is assumed to be the average of the
corresponding values in the two phases, i.e., 𝐿𝐿𝐿 =

(

1 − 𝑓v
) 𝛼𝐿𝐿𝐿 + 𝑓v

𝜃𝐿𝐿𝐿,
where 𝑓v ∼ 0.12 is the volume fraction of cementite. Then, it is
convenient to write the strain increments (in Voigt’s notation) in a form
that automatically satisfies (10) as
𝛼 𝜖 𝜖 𝜑
5

𝛥𝜖𝜖 = 𝛥𝜖𝜖 + 𝑓v𝜑𝜑 (27)
Table 1
Chemical composition of 0.8wt%C steel.

C Mn Si Cr P S

wt% 0.83 0.53 0.20 0.04 0.011 0.012

𝜃𝛥𝜖𝜖𝜖 = 𝛥𝜖𝜖𝜖 −
(

1 − 𝑓v
)

𝜑𝜑𝜑 (28)

where 𝜑𝜑𝜑 =
[

0, 0, 𝜑3, 0, 𝜑5, 𝜑6
]𝑇 is a transfer vector (still to be deter-

ined) such that (9) and (10) are fulfilled. In the transformed space
e can write

̂ =𝑄𝑄𝑄𝑇𝜑𝜑𝜑 =

[

𝜑3
√

3
, 0,

2𝜑3
√

3
, 0, 𝜑5, 𝜑6

]𝑇

(29)

The parameters 𝜑3, 𝜑5 and 𝜑6 can be determined analytically by
imposing the continuity of tractions at the interface, Eq. (9). The details
of the calculations and the final expressions of these parameters are
given in Appendix A.

3.3. Integration algorithm for the complete pearlitic model

The constraints represented by vector �̂�𝜑𝜑 to guarantee the continuity
at the ferrite–cementite interface determine the coupled behaviour of
the two phases; this should be accounted for in the numerical proce-
dure to integrate the constitutive equations. Following the integration
scheme described in Section 3.1 and recalling Eq. (26), the system of
equations to be solved for the coupling of ferrite and cementite phases
is now

𝛼𝑓 =

√

√

√

√

6
∑

𝑖=1

𝛼𝑃 𝑖
𝛼 �̂�2𝐵𝑖

2 𝛼�̂�2
𝑖

− 𝛼𝜎𝑦 = 0 (30)

𝜃𝑓 =

√

√

√

√

√

6
∑

𝑖=1

𝜃𝑃 𝑖
𝜃 �̂�2𝐵𝑖

2 𝜃�̂�2
𝑖

− 𝜃𝜎𝑦 = 0 (31)

sing a Newton–Raphson algorithm to solve the above system, the
teration from step 𝑘 to 𝑘 + 1 can be written as

𝜆𝜆𝜆(𝑘+1) = 𝛥𝜆𝜆𝜆(𝑘) −
(

J(𝑘)
)−1 𝑓𝑓𝑓 (𝑘) (32)

where

𝛥𝜆𝜆𝜆 =
(𝛼𝛥𝜆, 𝜃𝛥𝜆

)𝑇 ; 𝑓𝑓𝑓 =
(𝛼𝑓, 𝜃𝑓

)𝑇 ; J =
⎛

⎜

⎜

⎝

𝜕 𝛼𝑓
𝜕 𝛼𝛥𝜆

𝜕 𝛼𝑓
𝜕 𝜃𝛥𝜆

𝜕 𝜃𝑓
𝜕 𝛼𝛥𝜆

𝜕 𝜃𝑓
𝜕 𝜃𝛥𝜆

⎞

⎟

⎟

⎠

(33)

Details of the calculation of the Jacobian J are given in Appendix B.
Once the vector of multipliers, 𝛥𝜆𝜆𝜆, is calculated, the stress state at the
end of the increment for each phase 𝜔 ∈ {𝛼, 𝜃} is calculated as follows:

𝜔𝜎𝜎𝜎𝑛 =𝑄𝑄𝑄
𝜔�̂�𝜎𝜎𝑛 =𝑄𝑄𝑄

𝜔
�̂�𝐵𝐵−1 𝜔�̂�𝜎𝜎𝐵 (34)

where 𝜔�̂�𝜎𝜎𝐵 is given by (A.2). Finally, the overall stress of the colony at
the end of the incremental step turns out to be

𝜎𝑛 =
(

1 − 𝑓v
) 𝛼𝜎𝜎𝜎 + 𝑓v 𝜃𝜎𝜎𝜎 (35)

4. Model calibration

The mesoscopic model for pearlite described in the previous sections
is applied here for comparison with the results of tensile, compression
and torsion tests performed on 0.8wt%C eutectoid steel wires (see steel
composition in Table 1) coming from a 13-pass drawing series supplied
by NV Bekaert SA.

Table 2 shows the true nominal strains associated to this series. Each
drawn wire was subjected to a set of three tensile tests. In the case
of compression tests, small size specimens were cut from passes 0, 6

and 13 with an aspect ratio (length/radius) of about 3, parallel top
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Table 2
Description of starting patented 0.8wt%C steel and the
series of drawn wires.

Pass Nominal true strain

0 0.0
1 0.25
2 0.51
3 0.75
4 0.97
5 1.18
6 1.43
7 1.66
8 1.89
9 2.08
10 2.28
11 2.44
12 2.60
13 2.74

and bottom surfaces (< 1.5◦) carefully prepared with a roughness of
𝑎 < 0.1 μm. Torsion tests were also performed on wires from passes 0,
and 13.

The experimental results (averaged for 3 specimens) were compared
ith the results of equivalent virtual tests in a representative volume
lement (RVE) stretched with periodic boundary conditions [57]. The
VE considered in the finite element computations is shown in Fig. 4.
he model consists of a cube of 30 × 30 × 30 elements containing 500
earlitic colonies, generated using Voronoi tessellation.

In order to simulate the wire drawing process, the RVE was uni-
xially stretched using periodic boundary conditions up to strain levels
quivalent to those applied in the wire drawing experiments (maximum
quivalent strain, 𝜖eq = 2.72, i.e., maximum stretching factor of 𝑙∕𝑙0 ≈
15). The material properties used in the simulations were calibrated to
fit the UTS evolution with drawing strains (see Table 3). Noteworthily,
the isotropic hardening associated to Voce-hardening was almost neg-
ligible (𝜏sat − 𝜏0 = 20 MPa) as previously stated by Alkorta et al. [41].
Work hardening in ferrite is, therefore, essentially anisotropic and
driven by the reduction of the mean free path for dislocation glide
along the in-plane directions (via Eq. (4)). Moreover, although friction
stress 𝜏𝑓 in low-alloyed ferrite is typically of the order of some tens
of MPa (Peierls stress plus solid solution strengthening), the initial
effective dislocation density in patented eutectoid steels can be very
large (≈ 2.6 ⋅ 1015 m−2) as observed by Guelton and François [58],
which justifies the large values of (𝜏𝑓 + 𝜏0) in our calibration (the same
authors also show that rate of dislocation storage in pearlitic ferrite at
large strains is small, in agreement with our model results of its very
weak strain hardening). The best fit value of 𝐴 was slightly higher
than that typically reported in literature (1 ≤ 𝐴 ≤ 1∕(1 − 𝜈)). This
deviation could be explained by the effect of crystal anisotropy on the
critical shear stress of a Frank–Read source, as observed by [59] or by
the effect of the chemical composition on the elastic modulus. In this
sense, Cr, Mn and Si, for example, are known to increase the elastic
modulus of ferrite [60,61] (see Table 1). With regard to the initial
interlamellar spacing of the colonies, we considered that it follows a
log-normal distribution with an average size of 120 nm and a standard
deviation of 32 nm. These values were obtained from SEM observation
on the patented state before drawing. For this purpose, 60 micrographs
of the etched surface were taken, and the true interlamellar spacing was
calculated using Underwood’s method [62].

Fig. 5 shows the comparison between the stress–strain curve result-
ing from the numerical simulation after an optimal calibration and the
UTS experimental data obtained after each of the 13 drawing passes.
The model describes very accurately the strain hardening behaviour of
the eutectoid steels up to high strain levels. The observed error in UTS
is below 2% in all the cases.
6

Table 3
Calibrated material properties for 0.8wt%C steel.

Parameter Equation Value

𝐴 (1) 1.682
𝜏𝑓 + 𝜏0 (2), (3) 300 MPa
𝜏𝑓 + 𝜏sat (2), (3) 320 MPa
𝛽 (3) 34.48
𝐾 (4) 86.9 nm
𝑚 (4) 0.392
𝜃𝜎𝑦 (7) 4200 MPa

5. Results and discussion

One of the most important advantages of the proposed model is that
it is able to account for the evolution of microstructural features such as
interlamellar spacing and orientation and also the evolution of internal
stresses (stress partitioning) generated by the mismatch in elastic–
plastic behaviour of cementite and ferrite phases. In the introductory
paper by Alkorta et al. [41], the model showed to be able to reproduce
the microstructural evolution of eutectoid steels during wire drawing,
highlighting the relevance of anisotropic plasticity of ferritic lamellae
on the promotion of the typical curly microstructure in the form of
Van Gogh skies [63,64] in the transverse section. Fig. 4(b) shows an
example of such distortion calculated with the current model. This
enhanced distortion of colonies leads to smaller interlamellar spacings
that promote an enhanced strain hardening.

On the other hand, the building of internal stresses during plastic
deformation is responsible for the distinct response of drawn wires
to different loading conditions, something that has been repeatedly
reported elsewhere [65,66]. In the following section, the macroscopic
predictions of the model will be compared with experimental strain–
stress curves under different loading conditions. The results will also be
analysed critically in relation to the reported observations of internal
stresses in ferrite and cementite through neutron and X-ray diffraction.

5.1. Mechanical response under tensile, torsion and compression stresses

In order to observe the predictive ability of the model under differ-
ent loading conditions, three wires corresponding to drawing strains of,
respectively, 𝜖𝑝 = 0.0, 1.3 and 2.7 were subjected to tensile, torsion and
compression tests.

Fig. 6 shows the von Mises equivalent stress–strain response to ex-
perimental tensile, torsion and compression tests. The results show that
initially (patented wire) the mechanical response is almost identical
for all cases. In contrast, the mechanical response for drawn wires
becomes increasingly anisotropic with drawing strain. This evolution
can be summarized as follows: (1) Drawn wires exhibit an important
Bauschinger effect with smaller yield stresses in compression indicative
of strong internal back-stresses after drawing. (2) Compression tests
show a double kink (specially in passes 0 and 6 and more subtly in pass
13) related to the displaced onset of plasticity of ferrite and cementite
phases. For instance, pass 6 shows an initial yield point in compression
test at ≈ 800 MPa followed by an almost linear hardening up to ≈
1300 MPa where a sudden change in work hardening rate is observed.
(3) The strain hardening characteristics are different depending on the
strain path: thus, drawn wires (passes 6 and 13) exhibit strain softening
in compression and strain hardening in torsion. For comparison, a RVE
as that shown in Fig. 4 was subjected to uniaxial straining up to the
corresponding nominal drawing strain, unloaded, and then subjected
to tensile, compression and simple shear straining. Apart from some
minor differences in the initial shape of the curves in tensile and
compression tests, the agreement between the experimental tests and
the model results is excellent. The slight initial deviations are due to
the fact that: (1) The model has simplified the wire drawing procedure
by assuming that it is equivalent to uniaxial stretching on a RVE with
periodic boundary conditions. This means that the actual deformation
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Fig. 4. (a) Initial 30 × 30 × 30 RVE with ≈ 500 randomly oriented colonies; (b) Cross section mesh distortion after tensile straining with periodic boundary conditions (𝜖𝑝 = 2.7).
Fig. 5. (a) Experimental UTS vs. equivalent strain as calculated from the model; (b) work hardening rate derived from the experimental UTS vs. the calculated hardening rates.
Fig. 6. True stress vs. true strain curves for tensile (blue), torsion (green) and compression tests (red) for drawing passes 0, 6 and 13. The solid and dashed lines correspond,
respectively, to the experimental and FEM results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
history of real wires (which can, moreover, vary from the centre to
the surface of the wire) is not accurately considered. (2) Strain rate
sensitivity is not included in the model. (3) The compression tests
performed with small specimens machined from wires are prone to
errors because misalignment and lack of perfect parallelism of the
opposed faces of the cylindrical samples. These aspects could explain
the smoother behaviour of experimental stress–strain curves for tensile
and compression tests.

Despite the simplicity of the considered approach (disregarding
the crystalline nature of plasticity of either ferrite or cementite), the
7

model shows its impressive capability of predicting the anisotropic
evolution of pearlite for the diverse loading conditions and strain levels
considered. First, the Bauschinger effect is precisely detected as can be
seen in Fig. 7. Second, the kink due to a delayed onset of plasticity
in cementite is captured. Third, the distinct work hardening behaviour
of drawn wires under torsion and compression loading is accurately
predicted by the model at any drawing strain.

In summary, the results indicate that the model is particularly
robust in capturing the different aspects of the evolution of the me-
chanical response under different levels of drawing strain and under
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Fig. 7. Experimental results and FEM predictions of 1% proof stress for tensile (blue), torsion (green) and compression tests (red) for drawing passes 0, 6 and 13. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)
ifferent loading conditions. This is due, as we will see below, to the
act that the model is able to reproduce the microscopic stress state that
s built up during the plastic deformation of eutectoid steels.

.2. Internal stresses

The evolution of the anisotropic mechanical response after wire
rawing is affected by two main aspects of the problem: (1) The
icrostructural evolution of pearlitic lamellae (orientation and spacing

f lamellae); (2) The building of internal stresses during the plastic
eformation of pearlite. Both aspects are properly addressed in the
roposed model: the former with an evolutionary law described in
qs. (11) and (12) which has been observed to nicely describe the
icrostructural evolution of drawn pearlite as observed by Alkorta

t al. [41]; the latter is naturally built up as a consequence of the
ismatch between the mechanical strength between cementite and

errite and the perfect interfacial continuity and equilibrium conditions
stablished in Eqs. (9) and (10).

Fig. 8 shows the calculated distribution of internal elastic strains
t specific tensile strains (𝜖eq = 0.01, 0.11, 1.43) for cementite and
errite. Two main conclusions can be derived from these results: first,
he average elastic strain in longitudinal direction in cementite is larger
han in ferrite confirming the strain partitioning observed in X-ray and
eutron diffraction experiments [67–73]; second, the distribution of
lastic strains in cementite is, in general, very wide and it develops
t relatively low strains. These two different aspects of the results are
iscussed more deeply below.

.2.1. Average elastic strains; strain partitioning in pearlite
Fig. 9 shows the evolution of the average internal strains according

o the proposed model in both phases during the drawing process
uniaxial stretching). The results confirm that the strain partitioning
egins at around 700 MPa (which corresponds to the onset of plasticity
n ferrite), reaches a maximum around 1250–1500 MPa and then
eclines smoothly up to 𝜖eq ≈2.7. Note that this decline of the elastic
train partitioning at large drawing strains explains the reduction of
auschinger effect at pass 13 observed both in experimental and FEM
esults (see Fig. 7).

Fig. 10(a) shows a compilation of experimental elastic strain mea-
urements compared to the results obtained with the proposed model
thick curves) for patented pearlitic steels. Apart from the experimen-
al data dispersion caused by the wide range of yield strengths and
8

ompositions considered (see Table 4 for further details) the model
Table 4
Properties of the fully pearlitic materials corresponding to the internal stresses shown in
figure 10; IT: Isothermally transformed; SW+A: Swaged + low temperature annealing;
IT+WD: Isothermally Transformed + Wire drawn; AC: Air cooled. See the corresponding
references for further information. Yield stress for 0.2% offset strain.

Ref. Treatment wt%C 𝜎𝑦, MPa

Wang et al. [67] IT-1 0.82 ∼ 740
IT-2 0.82 ∼ 785

Kanie et al. [68] SW+A 0.82 1423

Gadalinska et al. [69] AC-1 0.68 396
AC-2 0.68 498

Tomota et al. [70] IT 0.85 930

Tomota et al. [71] IT+WD 0.88 3800

Shinozaki et al. [72]
IT-1 0.80 507
IT-2 0.80 659
IT-3 0.80 808

Adachi et al. [73] IT 0.80 ∼ 800

Current work IT 0.83 689

captures the essence of the evolution of elastic strains in both phases
and directions. Indeed, the experimental measurements in steels with
compositions and yield strengths similar to those of the steel considered
in the present work, shows quantitatively very similar results to the
calculations made with the model. The model, furthermore, is also able
to capture the reversed evolution of elastic strains in ferrite during
tensile loading of heavily drawn wires (see Fig. 10(b)). This reversed
deviation of elastic strains (compared to the behaviour of patented
wires) was first observed by Tomota et al. [71] and justified by a loss
of linearity of Hooke’s law at elevated elastic stresses. The proposed
model shows that, besides anelastic effects, the attenuation of strain
partitioning at elevated drawing strains contributes to such deviation.
The progressive axial alignment of the lamellae and the lack of strain
hardening of cementite are at the origin of such contribution.

In summary, the results demonstrate that the model captures the
mechanisms of the development of internal stresses during the plastic
deformation of pearlitic steels. This evolution is critical in order to
correctly describe the evolution of plastic anisotropy as discussed in
Section 5.1.

As pointed out above, the anisotropic evolution of the mechanical
response after wire drawing is affected by the evolution of stress
partitioning in cementite and ferrite taking place during the plastic
deformation of pearlite. Thus, after moderate drawing strains (pass
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Fig. 8. Internal elastic strain distributions (left: longitudinal; right: transversal) for cementite and ferrite at different drawing strain levels.

Fig. 9. Evolution of the average elastic strains in cementite (blue lines) and ferrite (red lines) in longitudinal (solid lines) and transverse (dashed lines) directions. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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c

Fig. 10. Experimental review of the evolution of the average elastic strains in cementite (blue lines) and ferrite (red lines) in longitudinal (solid lines) and transverse (dashed
lines) directions for (a) patented and (b) drawn wires. Thick lines correspond to the results of the current model. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 11. Standard deviation of internal elastic strain distributions in cementite and ferrite as a function of the applied stress.
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6), ferrite develops compressive internal stresses in the longitudinal
direction that are compensated with the tensile stresses of cementite.
This stress distribution is responsible for an early yield stress (related
to the onset of plasticity of ferrite) and a delayed onset of plasticity
of cementite (manifested as a kink in the hardening curve at higher
stresses). This also explains the reduction of the Bauschinger effect
at very high drawing strains (pass 13): as the mechanical strength of
ferritic phase increases and the cementite is reaching its plastic strength
the mismatch in strength between ferrite and cementite decreases and
strain partitioning is mitigated.

5.2.2. Distribution of elastic strains
As discussed above, the results also show that the distribution of

elastic strains in cementite widens at relatively low strains, even before
the onset of plasticity of cementite (see Fig. 8). This broadening is
compatible with the significant peak broadening observed in X-ray and
neutron diffraction experiments on in-situ testing of patented pearlitic
steels [67,68,74–77]. Fig. 11 shows the standard deviation of the elastic
strain distributions of ferrite and cementite as a function of the applied
stress calculated with the proposed model. The results show that the
distribution of strains in cementite reaches a maximum deviation of
0.005 at an applied stress of 𝜎 ≈ 1200 MPa (𝜖eq ≈ 0.11) which
10

oincides approximately with the onset of plasticity in cementite; this e
orresponds to an additional peak broadening of 0.01 times the d-
pacing which is in line with the experimental broadening reported in
iterature [67,74,75].

The accommodation of elastic strains in cementite is highly orien-
ation dependent. As an example, Fig. 12 shows a cross section of the
olour map of the longitudinal elastic strain component (𝜖33) of cemen-
ite compared to its orientation angle (𝜙). 𝜙 is the angle between the
rawing direction and the normal to the lamellae, i.e., 0◦ corresponds
o lamellae perpendicular to the drawing direction and 90◦ corresponds
o lamellae oriented parallel (with its normal oriented perpendicular)
o the drawing direction. The results show a clear correspondence
etween strain values and orientation. In more detail, Fig. 13 shows
he distribution of elastic strains in cementite and ferrite at different
pplied stresses in longitudinal and transverse directions. Colonies
riented at 45◦ to drawing direction show minimum elastic strains in
ementite in longitudinal direction. This should not be surprising as
his is the ‘‘softest’’ loading condition for ferrite (equivalent to 31 shear
tress in Fig. 2). Noteworthy, according to Fig. 13, the local elastic
train distribution at a given orientation (width of the distribution for
given 𝜙) is similar to that in ferrite; this implies that the origin of the
eak broadening in cementite observed in X-ray and neutron diffraction
xperiments is fully motivated by geometric aspects and the composite
ature of pearlite. This confirms the conclusions reached by Weisser

t al. [75] on this regard. This is also aligned with the mitigation of the



Acta Materialia 263 (2024) 119533J.R. Páez et al.
Fig. 12. Colour map representing the colony orientation (top) and its corresponding elastic strain map for cementite in longitudinal direction (bottom) at a total equivalent strain
of 𝜖eq = 0.11 (applied stress, 𝜎 = 1250 MPa).
Fig. 13. Internal elastic strain distributions (left: longitudinal; right: transversal) for cementite and ferrite as a function of the lamellar orientation at different drawing strains.
peak broadening observed in chemically extracted cementite through
X-ray diffraction with respect to the deformed composite [78,79].

Finally, the strong difference between elastic strain distributions of
axial and transverse stresses (Figs. 8 and 13) is easily understandable.
The orientation of the lamellae of pearlite deformed by wire drawing
is rotationally symmetric around the axial orientation of the wire
(for an initial random orientation of the colonies of the undeformed
pearlite). Viewed from a transverse direction, such symmetry is lost.
The strain state viewed from a random radial direction of the wire
11
depends on the azimuthal angle of the normal to the lamellae. Thus, the
strain distribution of ferrite and cementite are broader than the axial
counterparts. The broadening of cementite peaks is particularly evident
before the lamellae of cementite reach their elastic limit.

6. Conclusions

A novel two-phase anisotropic constitutive model for eutectoid
steels has been proposed that efficiently predicts the strain hardening
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of eutectoid steels and the anisotropy induced by cold deformation
during wire drawing process up to equivalent strains of 𝜖eq = 2.7.
The model is built using classical descriptions of dislocation glide, con-
sidering the effect of dislocation confinement in pearlite but ignoring
crystal plasticity. Still, it is able to capture the mechanical response
under different loading conditions (in particular, tensile, torsion and
compression). The good agreement of the model with the experimental
results relies on two main aspects: first, the model is able to reproduce
the microstructural evolution in terms of interlamellar spacings and
lamellar orientation; and second, the model is able to capture the
building up of internal stresses and the evolution of strain partition-
ing between cementite and ferrite phases. In this regard, the model
coincides precisely with the elastic strain measurements done by in-situ
X-ray and neutron diffraction and offers a new tool for understanding
the plasticity of pearlitic steels beyond the range available in diffraction
experiments. For instance, the model clarifies the abnormal broad-
ening of cementite peaks observed in diffraction experiments. Thus,
the model shows that a significant contribution to peak broadening
at early stages of deformation is not linked to structural defects. Peak
broadening can be attributed to the elastic strain dispersion related to
the initially randomly oriented lamellar structure of pearlite.
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Appendix A. Calculation of the transfer vector �̂�𝝋𝝋

Considering the transformed space, the definition of trial stress and
he transfer vector as defined in Eq. (29), the trial stress for each phase
an be calculated as:

�̂�𝜎𝜎𝐵 = 𝛼�̂�𝜎𝜎𝑜 + �̂�𝐶𝐶
(

𝛥𝜖𝜖𝜖 + 𝑓v�̂�𝜑𝜑
)

= 𝛼�̂�𝑠𝑠𝐵 + 𝑓v�̂�𝐶𝐶�̂�𝜑𝜑 (A.1)
𝜃�̂�𝜎𝜎𝐵 = 𝜃�̂�𝜎𝜎𝑜 + �̂�𝐶𝐶

(

𝛥𝜖𝜖𝜖 −
(

1 − 𝑓v
)

�̂�𝜑𝜑
)

= 𝜃�̂�𝑠𝑠𝐵 −
(

1 − 𝑓v
)

�̂�𝐶𝐶�̂�𝜑𝜑 (A.2)

where 𝛼�̂�𝑠𝑠𝐵 and 𝜃�̂�𝑠𝑠𝐵 are, respectively, the apparent trial stresses of ferrite
and cementite in the absence of the transfer vector. Then, according
to (25) the stress at the end of the increment in each phase can be
calculated as follows:
𝜔�̂�𝜎𝜎𝑛 =

𝜔
�̂�𝐶𝐶

−1 𝜔�̂�𝜎𝜎𝐵 , for 𝜔 ∈ {𝛼, 𝜃} (A.3)

Now we impose the continuity of tractions at the interface, Eq. (9),

𝛼𝜎𝑛𝛽 −
𝜃𝜎𝑛𝛽 =

6
∑

𝑖=1
𝑄𝛽𝑖

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝛼 �̂�𝐵𝑖
𝛼�̂�𝑖

−
𝜃 �̂�𝐵𝑖
𝜃�̂�𝑖

⎞

⎟

⎟

⎠

+𝑄𝛽𝑖�̂�𝑖�̂�𝑗
⎛

⎜

⎜

⎝

1 − 𝑓v
𝛼�̂�𝑖

+
𝑓v
𝜃�̂�𝑖

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(A.4)

where 𝜎𝑛𝛽 are the components of vector 𝜎𝜎𝜎𝑛, for 𝛽 ∈ {3, 5, 6}, and �̂�𝐵𝑖 are
he components of vector �̂�𝑠𝑠𝐵 . 𝜑𝑖 can be obtained by solving the system
f equations in (A.4).

ppendix B. Calculation of the Jacobian J

The elements of the Jacobian matrix J in Eq. (33) are calculated as
ollows:

𝜔𝜓 =
𝜕 𝜔𝑓
𝜓 =

𝜕 𝜔𝜎𝑒𝑞
𝜓 −

𝜕 𝜔𝜎𝜓
𝜓 = 𝑆𝜔𝜓 − 𝐴𝜔𝜓 with 𝜔,𝜓 ∈ {𝛼, 𝜃} (B.1)
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𝜕 𝛥𝜆 𝜕 𝛥𝜆 𝜕 𝛥𝜆
he second term in (B.1) corresponds to the work-hardening of each
hase. As cementite is assumed elastic perfectly-plastic in the model,
his term can be written in matrix form as

=

⎛

⎜

⎜

⎜

⎝

𝜕 𝛼𝜎𝑦
𝜕 𝛼𝛥𝜆

𝜕 𝛼𝜎𝑦
𝜕 𝜃𝛥𝜆

𝜕 𝜃𝜎𝑦
𝜕 𝛼𝛥𝜆

𝜕 𝜃𝜎𝑦
𝜕 𝜃𝛥𝜆

⎞

⎟

⎟

⎟

⎠

=
(

𝐴 0
0 0

)

(B.2)

To calculate the elements in the first term of (B.1), note that for the two-
phase pearlite the trial stresses 𝛼�̂�𝜎𝜎𝐵 and 𝜃�̂�𝜎𝜎𝐵 depend on the coupling
parameters 𝜑𝜑𝜑, see Eqs. (A.1) and (A.2). After doing the algebra, these
erms can be written in matrix form as

=
6
∑

𝑖=1

(

R𝐷𝑖 + R𝐵𝑖
)

B𝑖 (B.3)

where

R𝐷𝑖 =

⎛

⎜

⎜

⎜

⎝

𝜕 𝛼𝜎eq
𝜕 𝛼 �̂�𝑖

0

0
𝜕 𝜃𝜎eq

𝜕 𝜃 �̂�𝑖

⎞

⎟

⎟

⎟

⎠

(B.4)

R𝐵𝑖 =
6
∑

𝑗=1

⎛

⎜

⎜

⎜

⎝

𝜕 𝛼𝜎eq
𝜕 𝛼 �̂�𝐵𝑗

𝜕 𝛼 �̂�𝐵𝑗
𝜕�̂�𝑗

𝜕�̂�𝑗
𝜕 𝛼 �̂�𝑖

𝜕 𝛼𝜎eq
𝜕 𝛼 �̂�𝐵𝑗

𝜕 𝛼 �̂�𝐵𝑗
𝜕�̂�𝑗

𝜕�̂�𝑗
𝜕 𝜃 �̂�𝑖

𝜕 𝜃𝜎eq
𝜕 𝜃 �̂�𝐵𝑗

𝜕 𝜃 �̂�𝐵𝑗
𝜕�̂�𝑗

𝜕�̂�𝑗
𝜕 𝛼 �̂�𝑖

𝜕 𝜃𝜎eq
𝜕 𝜃 �̂�𝐵𝑗

𝜕 𝜃 �̂�𝐵𝑗
𝜕�̂�𝑗

𝜕�̂�𝑗
𝜕 𝜃 �̂�𝑖

⎞

⎟

⎟

⎟

⎠

(B.5)

B𝑖 =
⎛

⎜

⎜

⎜

⎝

𝜕 𝛼 �̂�𝑖
𝜕 𝛼𝛥𝜆

𝜕 𝛼 �̂�𝑖
𝜕 𝜃𝛥𝜆

𝜕 𝜃 �̂�𝑖
𝜕 𝛼𝛥𝜆

𝜕 𝜃 �̂�𝑖
𝜕 𝜃𝛥𝜆

⎞

⎟

⎟

⎟

⎠

(B.6)

On the other hand, matrix 𝐵𝐵𝐵𝑖 can be written as

B𝑖 = C𝑖
(

I2 − D ⋅ S
)

(B.7)

where I2 is the 2 × 2 unit matrix,

C𝑖 =
⎛

⎜

⎜

⎜

⎝

�̂�𝑖
𝛼𝑃 𝑖

2 𝛼𝜎eq
0

0 �̂�𝑖
𝜃𝑃 𝑖

2 𝜃𝜎eq

⎞

⎟

⎟

⎟

⎠

(B.8)

and

D =
⎛

⎜

⎜

⎝

𝛼𝛥𝜆
𝛼𝜎eq

0

0
𝜃𝛥𝜆
𝜃𝜎eq

⎞

⎟

⎟

⎠

(B.9)

Substituting (B.7) into (B.3), we can solve for S to obtain

S =
(

I2 +K ⋅ D
)−1 K (B.10)

with

K =
6
∑

𝑖=1

(

R𝐷𝑖 + R𝐵𝑖
)

C𝑖 (B.11)

Finally, the Jacobian J is calculated from (B.2) and (B.10) as

J = S − A (B.12)
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