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A conceptual framework of the applicability of production scheduling from a
contingency theory approach: addressing the theory-practice gap

Rodrigo Romero-Silvaa,b , Javier Santosc and Margarita Hurtado-Hern�andezb

aOperations Research and Logistics Group, Wageningen University & Research, Wageningen, Netherlands; bFaculty of Engineering,
Universidad Panamericana, Mexico City, Mexico; cTECNUN, University of Navarra, Donostia-San Sebasti�an, Spain

ABSTRACT
In the last century, there was a general perception that scheduling theory was highly irrelevant to
scheduling practice. Many recent studies, however, have suggested that the applicability of scheduling
approaches is highly intertwined with the manufacturing environment in which the scheduling task is
carried out. In this paper we used the constructs of Contingency Theory to suggest specific fits
between scheduling approaches and manufacturing environments, after suggesting that the theory-
practice gap in production scheduling research has been caused by three issues: (a) simplification of
scheduling problems, (b) simplification of the practical scheduling task as a decision process, and (c)
lack of relevance of the traditional scheduling approach to all manufacturing environments.
Furthermore, we suggest that the dynamism of the state of the system and the complexity of the
scheduling problem are the two constituting vectors that define the complexity of the scheduling
task. We use both vectors to identify different types of manufacturing environments and propose spe-
cific fits with scheduling approaches. Finally, we hypothesize that the fit between scheduling
approaches and manufacturing environments is only relevant in environments with high resource util-
ization where the scheduling task could have a bigger impact on a firm’s performance, and present
three case studies to better exemplify the relevance of the conceptual framework.
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1. Introduction

Production scheduling has been a very prolific field of study
in the last 40 years, as it has covered very different types of
scheduling problems while considering a wide variety of con-
straints and objectives. However, one of the biggest chal-
lenges for production scheduling has been to transfer its
body of theoretical knowledge to actual practical settings.

Various authors (McKay, Safayeni, and Buzacott 1988;
Buxey 1989; Wiers 1997; McKay and Wiers 1999; McKay and
Buzacott 2000) have suggested that the gap between theory
and practice in production scheduling is mainly caused by a
lack of agreement between the actual scheduling process
carried out in shop floors and the tools designed to support
the scheduling task. At the same time, several authors only
study theoretical problems instead of problems based on
real manufacturing environments (Reisman, Kumar, and
Motwani 1997; Halsall, Muhlemann, and Price 1994;
Abedinnia et al. 2017).

Consequently, the gap between theory and practice could
be closed by designing an improved system for supporting
decisions related to the scheduling task (Framinan and Ruiz
2010; Framinan and Ruiz 2012), where all the activities car-
ried out when building a schedule are properly supported.

In 2000, Portougal and Robb suggested that the theory-
practice gap could also be caused by the scheduling task’s
lack of relevance in certain manufacturing contexts.
Portougal and Robb take the view that traditional schedul-
ing theory is not applicable in every context and that
some contexts can see better performance by applying dif-
ferent (and simpler) planning practices. This proposal con-
curs with Contingency Theory (Van de Ven and Drazin
1984) which suggests that some particular managerial
practices have a better fit with some contextual factors
than with others and that even some of the ‘best practi-
ces’ in the field could be ill-suited for some particular busi-
ness environments.

In addition to Portougal and Robb, other authors have
undertaken empirical studies on the applicability of produc-
tion scheduling in different manufacturing contexts and
found that the applicability of different approaches to pro-
duction planning, scheduling and control is context-depend-
ent (see, e.g. Jonsson and Mattsson 2003; Romero-Silva,
Hurtado, and Santos 2016; Tenhi€al€a 2011).

While some evidence from the literature supports the
idea that the actual applicability of production scheduling
could be directly related to the scheduling environment, no
study has synthesized these results into a consolidated
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framework that explains the main causes of the theory-prac-
tice gap in scheduling as well as the reasons for the (lack of)
applicability of different scheduling approaches in real pro-
duction scenarios. Therefore, the objective of this paper is to
propose a conceptual framework of the applicability of pro-
duction scheduling to real production scenarios. Supported
by concepts from Contingency Theory, we identify specific
fits between manufacturing environments and scheduling
approaches. This understanding could help companies to
better allocate resources to improve operations, depending
on their particular contextual characteristics.

To highlight the relevance of this study and justify the
need to propose the conceptual framework, this paper first
provides an overview of the current state of the gap
between theory and practice in production scheduling
research. Supported by the classification of operations man-
agement papers using Contingency Theory from Sousa and
Voss (2008), we use the findings from previous studies to
characterize manufacturing environment types and identify
which scheduling approaches (control-theoretic, predictive,
reactive and predictive-reactive) are the most suitable for
each environment. Three case studies of manufacturing firms
are also presented as an illustration of the applicability of
the conceptual framework. Finally, we discuss the implica-
tions of our propositions and suggest future research oppor-
tunities that could help to further close the theory-practice
gap in scheduling practice research.

2. The gap between theory and practice in
production scheduling research: 20 years later

In 1997, Reisman, Kumar, and Motwani conducted a review of
studies concerned with flow-shop scheduling. In that review,
they found that <3% of the studies could be classified as stud-
ies with a ‘grounding in the real world’. Furthermore, many
authors were calling for more research grounded in scheduling
realities (King 1976; McKay, Safayeni, and Buzacott 1988; Buxey
1989; Wiers 1997; McKay and Wiers 1999; McKay and Buzacott
2000) to address the needs of schedulers, particularly from the
point of view of supporting the scheduling task as a whole
and not only as a combinatorial problem.

Those papers suggested that there were two primary rea-
sons that explained why a theory-practice gap existed in the
academic literature before 2000: (a) simplification of schedul-
ing problems by developing scheduling solutions focused
only on solving either static and deterministic scheduling
problems or ‘toy problems’, a term used by Jalali and Van
Nieuwenhuyse (2015), where synthetic data is used to repre-
sent a scheduling problem, instead of real-world scenarios;
and (b) simplification of the practical scheduling task exempli-
fied by the fact that very little research has acknowledged
the scheduling task as an iterative and continuous task com-
prised of more activities than solely building a feasible
schedule (e.g. monitoring and control). In this regard,
whereas (a) resulted in a lack of applicability of algorithmic
and heuristic solutions to solve real-world problems, (b)
caused a dearth of effective decision support in real

manufacturing environments by ignoring the fundamental
characteristics of the scheduling task.

Over the last 20 years, the field of production scheduling
has been developing new solutions for complex problems
in order to close the gap in terms of issue (a), both in real--
world and theoretical instances. In this regard, Fuchigami
and Rangel (2018) conducted a very interesting survey of
studies related to solving scheduling problems based on real
production case studies. Looking at a sample of 46 papers,
they found that real applications of scheduling techniques
have only been reported since 1992, the most recent years
(2011–2016) being the most prolific for this type of study.

In addition, the diversification of theoretical production
scheduling research can be clearly seen in Abedinnia et al.
(2017) systematic review of 129 reviews of studies concerned
with production (machine) scheduling. In that tertiary study,
Abedinnia et al. showed that theoretical scheduling research
has considered many shop floor environments, a variety of
scheduling and resource constraints, and different objective
and multi-objective functions. They also show the diversity
of solution approaches used to address some of the most
complex problems, e.g. exact algorithms, metaheuristics,
simulation and artificial intelligence.

On the other hand, a significantly smaller number of stud-
ies concerned with addressing (b) have been published, due
to the fact that research on (b) needs to be carried out
through empirical observations of real scheduling activities,
e.g. actual case studies and action research on manufacturing
and scheduling operations. The majority of studies addressing
issue (b) have investigated the implementation of Advanced
Planning and Scheduling systems (APS) in real scenarios (see,
e.g. Carvalho, Scavarda, and Lustosa 2014; Wiers and de Kok
2018a; Wiers 2009; Harjunkoski 2016). These studies have con-
cluded that dealing with the issue of production plant control
and monitoring is equally important as building schedules in
order to correctly model the production system and convert it
into a tractable scheduling problem.

While recent efforts have certainly helped to close the
theory-practice gap that existed 20 years ago in terms of (a)
by addressing more realistic scenarios, the industrial market
of the 21st century has moved from a mass-production con-
text with stable demands and cyclic production settings
towards a customer-responsive market trying to fulfil
unstable and variable demands through mass customization
(Comstock, Johansen, and Winroth 2004; Rebecca 2002) and
engineer-to-order strategies.

This newer reality has increased the complexity of sched-
uling problems by adding various constraints and problem
characteristics. For instance, the production of different fami-
lies of products in the same facility has given more relevance
to sequence-dependent setup times in current production
environments (Tomotani and de Mesquita 2018; Romero-
Silva, Hurtado, and Santos 2016). Furthermore, it is not
always easy to predict processing times for customized prod-
ucts accurately, hence the presence of stochastic processing
times (Tomotani and de Mesquita 2018). Similarly, the
change from factory-focus (productivity) to customer-focus
(service) has shifted the scheduling objective from
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minimizing makespan to minimizing the number of tardy
jobs (Romero-Silva, Hurtado, and Santos 2016). This cus-
tomer-focused environment has also given issue (b) more
relevance regarding the execution of the scheduling task
because current dynamic and variable production environ-
ments are even more affected by disturbances, such as con-
tinuous order arrivals and changes in order specifications,
which emphasizes the importance of monitoring and control-
ling the production plant.

While real scheduling problems that existed more than
20 years ago have been addressed in some cases, as shown
by Fuchigami and Rangel (2018) and Abedinnia et al. (2017),
the newer realities of a customer-oriented context
(Schonberger and Brown 2017) have turned static and deter-
ministic schedules into irrelevant solutions for many compa-
nies, where a dynamic and stochastic environment exists.
Even rescheduling approaches where dynamism and stochas-
ticity are addressed by updating detailed schedules in the
presence of new information (see, e.g. Ouelhadj and Petrovic
2009; Bidot et al. 2009; Vieira, Herrmann, and Lin 2003;
Framinan, Fernandez-Viagas, and Perez-Gonzalez 2019) have
been applied seldomly to real industries (Uhlmann and
Frazzon 2018) or have been found to be inapplicable to cer-
tain manufacturing environments because of the high
instability and fuzziness of the environment (Abdullah and
Abdolrazzagh-Nezhad 2014).

This reality suggests that the scheduling approach needed
to solve different scheduling problems depends on the man-
ufacturing environment where the scheduling task is exe-
cuted and that the traditional approach studied in
scheduling theory (full, detailed resource assignments for all
the jobs), represented in seminal scheduling studies (e.g.
Pinedo 2016; Morton and Pentico 1993; Graham et al. 1979),
is not a ‘one-size-fits-all’ approach.

Therefore, a third reason for the theory-practice gap
becomes apparent, because many practitioners will find that
using the traditional scheduling paradigm will not help them
carry out their scheduling task: (c) lack of relevance of the
traditional scheduling approach to all manufacturing environ-
ments. In this regard, several studies have identified the (lack
of) applicability of traditional scheduling theory to different
manufacturing contexts. For instance, Wiers and Van der
Schaaf (1997) argued that traditional scheduling, i.e. pro-
active scheduling (Vieira, Herrmann, and Lin 2003), is highly
applicable to environments with no need for shop floor
autonomy due to a lack of environmental uncertainty
(Smooth shops), whereas it is ill-suited to very uncertain
environments that require a high level of human recovery
(Socio-technical shops). On the other hand, in environments
with high uncertainty and complexity (Stress shops), where a
reactive scheduling approach (Vieira, Herrmann, and Lin
2003) could be more applicable, human recovery will be
handicapped to have good scheduling performance.

Portougal and Robb (2000) suggested that the applicabil-
ity of traditional scheduling theory depends on the relation-
ship between the mean production cycle time and the
planning period. They also suggested that scheduling could
be more applicable in job-shop environments than in flow-

shop environments with batch production where, they con-
tend, short cycles are more common.

Wiers (2009) and Kjellsdotter (2012) studied the applicabil-
ity of Advanced Planning and Scheduling (APS) systems
depending on shop floor characteristics, based on the classi-
fication proposed by Wiers and Van der Schaaf (1997). They
both found that APS systems are in fact more applicable to
Smooth shops than to Socio-technical shops, where environ-
mental uncertainty hinders the ability of the APS to produce
feasible schedules because of the constant changes in the
manufacturing system.

De Snoo, Van Wezel, and Jorna (2011) found that uncertainty,
measured both by the stability of information and the frequency
of informational feedback, is a significant contextual factor in
the scheduling performance criteria used by companies, since
firms with higher scheduling task uncertainty were more con-
cerned with quick and feasible schedule generation than with
schedule optimization, whereas companies with lower uncer-
tainty were more focused on schedule optimization.

Finally, Tenhi€al€a (2011) suggested that the relationship
between the complexity of a manufacturing environment, as
defined by Hayes and Wheelwright’s (1979) product-process
matrix, and the level of detail in capacity planning is not a dir-
ect one. Thus, contrary to what Portougal and Robb (2000)
suggested regarding scheduling being more applicable in job-
shop environments, Tenhi€al€a contended that job-shops could
have a better fit with the simplest capacity planning method
of rough-cut planning, whereas the less complex environment
of production lines and batch processes with bottleneck con-
trol have a good fit with the more detailed level of finite-load-
ing capacity planning, i.e. detailed scheduling.

Thus, 20 years after Crawford and Wiers (2001) questioned
whether the scheduling task was a context-dependent or
domain-free task—a dichotomy between scheduling being a
task that can be described in a general way or specifically to
the context in which it is carried out—there is a consensus
on the fact that the scheduling task is a task that it is inher-
ently associated with the environment in which it is carried
out, since different scheduling approaches are suitable for
particular scheduling contexts. This suggests that a deliber-
ate decision should be made to identify the correct fit
between the scheduling task at hand and the scheduling
approach used to support that task.

Summarizing, the gap between theory and practice in the
academic literature on scheduling can be characterized by
three issues that are still relevant to this day. Table 1 synthe-
sizes the three main causes (issues) of the theory-practice
gap in production scheduling, as well as the consequences
of these issues, the efforts needed to overcome them, and
the current state of the gap in terms of each issue.

The common simplification of scheduling problems (issue
(a)) by academia (Abedinnia et al. 2017) to study more tract-
able problems (static-deterministic) has resulted in a lack of
focus on developing scheduling approaches that could be
more suitable for a variety of practical manufacturing envi-
ronments. This phenomenon has also permeated to industry,
where the majority of APS are focused on solving a static-
deterministic scheduling problem (Wiers and de Kok 2018b;
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Hvolby and Steger-Jensen 2010), producing a lack of both
awareness and interest in developing and applying other
scheduling approaches that differ from the traditional
approach. This reality, in combination with the fact that the
traditional scheduling approach is not applicable to all envi-
ronments (issue (c)) has resulted in the continued existence
of the theory-practice gap in scheduling. The fact that the
scheduling field still regards the scheduling task as a static
decision process and not as an iterative task (issue (b)) has
also resulted in a myopic view regarding the lack of applic-
ability of many algorithmic approaches (issue (c)) [by far the
most commonly studied scheduling approach in the litera-
ture (Romero-Silva and Marsillac 2019; Laengle et al. 2017)],
hindering the opportunity to study scheduling approaches
that acknowledge the realities of practical scheduling.

Overcoming these three issues to carry out an applicable
scheduling task is a holistic undertaking because an accurate
characterization of the scheduling problem (overcoming issue
(a)) does not only entail a better description of the resources,
jobs, constraints and objectives of the problem, but also of
the stability, dynamism and stochasticity of the problem,
which are key factors in deciding which level of monitoring
support will be needed to execute the practical scheduling
task, thus overcoming issue (b). Furthermore, by overcoming
issue (b), a better understanding of the needs of the schedul-
ing task in terms of monitoring and control can be obtained
in order to find the appropriate level of control support (see,
e.g. Romero-Silva and Hern�andez-L�opez 2020; Rossit, Tohm�e,
and Frutos 2019) required for carrying out the scheduling
task. However, even if issues (a) and (b) have been addressed,
the scheduling task performance will suffer if issues (a) and
(b) have not been concurrently considered in selecting a
relevant scheduling approach that fits the characteristics of
the scheduling task at hand, overcoming issue (c).

Therefore, a study that helps align scheduling approaches
with real scheduling environments will not only help
improve the applicability of production scheduling theory
proposals, it will also highlight the fact that the traditional

scheduling approach (static-deterministic) is not relevant for
all environments and that more effort is needed to support
current, very complex scheduling environments.

This paper is focused on overcoming issue (c) to help close
the theory-practice gap in scheduling, as proposals for over-
coming this issue have generally been overlooked by research-
ers. While many studies have highlighted the existence of issue
(c), to the best of our knowledge, only the studies by Jonsson
and Mattsson (2003), Wiers and Van der Schaaf (1997) and
Tenhi€al€a (2011) have tried to support the efforts in overcoming
issue (c) by understanding how planning approaches and envi-
ronments relate. However, Jonsson and Mattsson (2003) and
Tenhi€al€a (2011) only considered an aggregate level of planning,
whereas Wiers and Van der Schaaf (1997) only took into
account the level of autonomy on the shop floor (and not spe-
cific scheduling approaches) when trying to find a fit with
scheduling environments. Additionally, none of these studies
considered the different scheduling approaches available in the
literature or characterized the manufacturing environments to
explicitly find a correspondence between scheduling
approaches and manufacturing environments. By suggesting
the fit between manufacturing environments and scheduling
approaches, this paper will provide practitioners with a frame-
work to select a scheduling methodology applicable to the
needs of their specific production units as well as suitable mon-
itoring support.

3. Methodological approach

According to Wacker’s (1998) classification of theory-building
research, our research can be classified as an analytical con-
ceptual study, as it tries to build a relational model between
the factors that constitute the problem, i.e. the scheduling
approaches and the manufacturing environments, and to
postulate the effect that applicable and non-applicable
scheduling approaches have on scheduling performance.

Regarding the process of good theory-building, Wacker
(1998) suggests carrying out four incremental steps: defining

Table 1. Summary of causes (issues) for the theory-practice gap in production scheduling academic literature.

Cause of theory-practice gap
Consequence for the practice

of scheduling
Efforts needed to close the gap and

overcome the issue Current state of the gap

(a) Simplification of
scheduling problems

Lack of suitable
scheduling approaches

Accurate characterization of real-
world problems: jobs, resources,
constraints, objectives, stability,
dynamism, stochasticity

Smaller since 2000 (realistic scenarios have
been addressed and more approaches
have been proposed) but still exists
because more complex realities have
appeared and most of scheduling
research continues to be focused on the
static-deterministic approach (Abedinnia
et al. 2017)

(b) Simplification of the practical
scheduling task

Inadequate decision support Acknowledge the iterative and
continuous nature of the task:
schedule generation, monitoring,
control, repeat. Design decision
support tools acknowledging
this reality

Smaller since 2000 (several authors have
addressed this issue) but continues to
exist because not enough effort has
been put into studying scheduling as a
control activity, as most studies still
regard scheduling only as a
combinatorial problem

(c) Lack of relevance of the
traditional scheduling approach to
all manufacturing environments

Under-performing scheduling efforts
by using unsuitable
scheduling approaches

Identify the fits between scheduling
approaches and manufacturing
environments, based on
information from (a) and (b)

Some studies have tackled this issue
tangentially, e.g. capacity planning
(Tenhi€al€a 2011), but none has explicitly
aligned scheduling approaches with
manufacturing environments

PRODUCTION PLANNING & CONTROL 265



variables, defining the domain, building relationships (among
the variables) and generating theory predictions. Christensen
(2006), on the other hand, proposes that three steps are
needed for the process of descriptive theory-building: first,
observe, describe and measure the phenomena; second, cat-
egorize the phenomena according to their attributes; and,
third, make statements of correlation.

We believe that conclusions stemming from the literature
can be used to define the domain and variables of our con-
ceptual framework. Furthermore, as Christensen (2006) has
suggested that Contingency Theory (CT) can help in the step
of categorizing the attributes of the phenomena, we will also
use previous studies that take a CT approach regarding plan-
ning methods as a basis for identifying the most significant
factors regarding the applicability of production scheduling
as well as to define some of the relationships between
the variables.

The next two subsections present two of the foundational
concepts for this research. The first concept, the notion of
the practical production scheduling task (PPST), will support
the process of defining the domain, whereas the tenets of
CT will help us structure the conceptual framework, as we
identify its relevant variables and describe the relationships
among the variables. Section 4 will develop what Wacker
(1998) described as the steps for building relationships and
generating theory predictions by postulating propositions
that explain the applicability of production scheduling.

3.1. Practical production scheduling task

Various studies have stated that the actual task of produc-
tion scheduling is not only concerned with solving the com-
binatorial scheduling problem, but it is also a process that is
concerned with the activities of continuously monitoring and
controlling the shop floor, among other activities (Berglund
and Karltun 2007; McKay and Wiers 2003; Jackson, Wilson,
and MacCarthy 2004; Wezel, Jorna, and Meystel 2006).

An extended definition of the PPST that considers all the
activities of the actual scheduling task was proposed by
Romero-Silva, Santos, and Hurtado (2015). This proposed defin-
ition of the PPST conceives of scheduling as a continuous feed-
back loop where the schedule construction/update task and
the monitoring task of the manufacturing environment are
both critical activities for attaining the desired production
objectives; therefore, both activities are intertwined in the PPST.
In this conceptualization, the monitoring task is regarded as an
activity that is as important as the actual task of building a
schedule because it aids in the capacity to continuously identify
changes in the state of the system, e.g. variable job arrivals or
machine breakdowns, to further adapt the schedule to the
actual state of the manufacturing system.

Furthermore, as the PPST is a dynamic task that needs to
cope with job arrivals and disturbances in some manufactur-
ing environments, building static and complete schedules is
not feasible for all contexts. For this reason, the schedule
construction/update activity is an activity in which schedul-
ing agents use different scheduling approaches to cope with
different levels of environmental uncertainty, which could

lead them to disregard the practice of building complete
schedules and use simpler techniques instead.

Based on this definition of the PPST, the scheduling task
that is actually executed is highly influenced by organiza-
tional and human factors, which transcends the issue of
combinatorial optimization and makes it a suitable topic of
study for CT.

3.2. Research structure based on contingency theory

Contingency Theory proposes that some managerial practi-
ces are more suited to specific contexts since practices are
not universally applicable to all contexts. CT suggests that
practices are adopted with the aim of improving perform-
ance (Donaldson 2001), depending on the characteristics of
the environment, i.e. contextual factors. Thus, a good fit is
achieved when the selected practices produce a good
performance.

Since this notion of fit could explain why some schedul-
ing approaches are not suitable for organizing the produc-
tion of all manufacturing environments, we use it as a
theoretical basis for our conceptual framework. We use the
classification of operations management (OM) literature using
CT proposed by Sousa and Voss (2008) to structure our
research design. Sousa and Voss categorize OM studies using
CT based on three axes: research variables and measurement
of performance, research design, and the approach to study-
ing contingency fits.

In line with previous OM studies using CT (Sousa and
Voss 2008), we consider operating contexts (manufacturing
environment) and organizational practices (scheduling
approaches) as research variables while our research design
is what Sousa and Voss call an inferential detailed design,
meaning that we aim to find specific fits between the
research variables (Sousa and Voss suggest that ‘both concep-
tual and empirical studies may be considered inferential’).

In terms of the approach to studying contingency fits, we
consider the systems approach. The systems approach sug-
gests that a good fit can be attained by different combina-
tions of practices and contextual factors rather than linear
one-to-one fits due to the complexity of the cross-interac-
tions among the different contextual factors. A good fit will
exist as long as the behavior of the organizational system
(Romero-Silva, Santos, and Hurtado 2018) remains consistent,
regardless of the particular changes in the organizational
environment and organizational structure, which are the con-
stituent parts of the organizational system.

Thus, companies that have different specific contextual
factors and structures but the same global behavior will be
considered to be similar in the present study. Following the
suggestion in Romero-Silva, Santos, and Hurtado (2018), we
will use the concept of organizational systems to identify the
types of manufacturing firms instead of considering individ-
ual contextual and structural factors.

The outline of the steps that were taken to propose
the conceptual framework of the applicability of production
scheduling is shown in Figure 1. First, we define the
research variables of our framework by characterizing the
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manufacturing environments and the scheduling approaches.
Based on previous research, we then identify which schedul-
ing approaches could be most suitable to address the PPST
of each manufacturing environment. This will provide us
with the elements to formulate propositions on the fits
between manufacturing environments and scheduling
approaches and present our conceptual framework of the
applicability of production scheduling. Finally, as a didactical
exercise, we describe three case studies exemplifying four
different manufacturing environments to illustrate the applic-
ability of the conceptual framework.

4. Conceptual framework of the applicability of
production scheduling

From the studies covered in previous sections it can be con-
cluded that the PPST is a highly context-dependent activity.
For this reason, the tasks of variable and domain definition
in this conceptual framework are activities that are tightly
intertwined with the categorization of the phenomenology
of the PPST. Therefore, in Sections 4.1 and 4.2 we develop a
categorization of manufacturing environments and describe
the different scheduling approaches to arrive at a categoriza-
tion of the phenomena according to their attributes
(Christensen 2006) and describe the research variables. In
Section 4.3 we use the findings of previous studies reporting
on the use of different scheduling approaches to identify the
fits between manufacturing environments and scheduling
approaches and formulate propositions on the fits, where we
build relationships among the variables and propose theory
predictions (Wacker 1998).

4.1. Manufacturing environments characterization

The most common typology used to classify manufacturing
environments is the product-process matrix by Hayes and
Wheelwright (1979) as it captures a very logical strategic

alignment between the demand of a manufacturing firm and
the production process carried out to satisfy that demand.
Even though it has proven to be a useful classification for
modeling the strategic degree of integration between market
demands and the configuration of manufacturing processes
(Safizadeh et al. 1996; Ahmad and Schroeder 2002; Tenhi€al€a
2011), some empirical studies have found that the product-
process matrix is not able to describe the strategic fits cur-
rently existing in the industry (Helki€o and Tenhi€al€a 2013;
Kemppainen, Veps€al€ainen, and Tinnil€a 2008). Because of this,
we base our categorization of manufacturing environments
on a generalization of the product-process matrix proposed
by Helki€o and Tenhi€al€a (2013) who characterize the strategic
context of a firm using three dimensions: specificity, com-
plexity of the production task, and dynamism of the produc-
tion environment.

Process specificity in Helki€o and Tenhi€al€a’s model
accounts for the complexity of the production process flows
(layout and flexibility) while the complexity of the production
task models product variety as well as product modularity
and the complexity of the bill of materials. The dynamism
vector considers the rate of change in the operating
environment.

Since the scope of this study is focused on the oper-
ational level and not the strategic level considered in Helki€o
and Tenhi€al€a (2013), we adapt Helki€o and Tenhi€al€a’s concepts
to agree with the operational level scope considered in the
current study. In this regard, we consider the concept of
scheduling problem complexity, based on complexity theory
(Lenstra, Rinnooy Kan, and Brucker 1977), instead of the
complexity of the production task. The complexity of a
scheduling problem considers variables such as the number
of jobs, the production flows, constraints, and scheduling
objectives, incorporating notions included in Helki€o and
Tenhi€al€a’s dimensions of specificity (e.g. production flows)
and complexity of the production task (e.g. number of jobs,
release date constraints). In addition, dynamism was
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Figure 1. Outline of the research steps taken in this study to formulate the conceptual framework.
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considered by Helki€o and Tenhi€al€a (2013) on a strategic level.
However, in our study, this vector is concerned with the
operational level and considers how deterministic (or sto-
chastic) the actual manufacturing process is, e.g. variable
processing times, machine breakdowns, random job routings,
unplanned order arrivals. Thus, in this study, we consider
scheduling problem complexity and dynamism of the system
as the two vectors that characterize the manufacturing envi-
ronments at the operational level.

4.1.1. Dynamism of the system
System dynamism describes the amount of change that a
manufacturing system state has over a time period, i.e. the
predictability of a system. For example, manufacturing envi-
ronments that have very few products and carry out fixed
production cycles (Tomotani and de Mesquita 2018) with
very high volumes and little product variety will have a very
low degree of dynamism since the state of their production
system will be highly predictable. Because of this predictabil-
ity, it is expected that a shop floor with low dynamism will
work under a make-to-stock policy.

On the other hand, highly dynamic systems are unpre-
dictable because their demands have a high degree of vari-
ation due to continuous order arrivals or very different
product types. In these scenarios, the manufacturing pro-
cess is also highly unpredictable because the processing
and setup times are stochastic and machine breakdowns
may occur frequently.

It should be noted that the predictability of the environ-
ments could be a direct result of market needs, such as
product variety and modularity, but these demand character-
istics are not a direct measurement of the dynamism of the
manufacturing system. Therefore, system dynamism (Dyn)
could be parameterized as a function of some of the follow-
ing characteristics, taken from Halsall, Muhlemann, and Price
(1994) and Tomotani and de Mesquita (2018):

� Predictability of demand (Dmd), which can be revealed by
the stability of production runs. For instance, fixed pro-
duction sequences with a make-to-stock strategy result in
predictable demand.

� Predictability of job routing (Rou), which can be the result
of clearly known job/order specifications or fuzzy specifi-
cations because of engineer-to-order production.

� Randomness of processing and setup times (Stch).
� Probability of machine breakdowns (Brk): overall machine

efficiency (Hopp and Spearman 2000).
� Stability of due dates and other constraints (Scnstr), i.e.

probability of change for existing constraints.
� Job arrivals dynamism (Arr), which can be measured by

the effective degree of dynamism proposed in the domain
of the dynamic vehicle routing problem (Pillac et al. 2013;
Larsen, Madsen, and Solomon 2002).

Thus, similar to other authors (Ahmad and Schroeder
2002; Safizadeh et al. 1996; Kemppainen, Veps€al€ainen, and
Tinnil€a 2008; Helki€o and Tenhi€al€a 2013), we suggest all these

parameters be measured in a linear manner. For example, a
linear measure can be implemented to assess the degree of
randomness of processing times by measuring the percent-
age of jobs that have random processing times. If each par-
ameter is operationalized with values between 0 and 1 by
setting a range between the minimum and maximum values
of the firms in the sample and all the values of the sample
are interpolated, then a linear combination of all the
weighted parameters can be used to calculate Dyn. For
example:

Dyn ¼ w1Dmd þ w2Rouþ w3Stchþ w4Brk þ w5Scnstr þ w6Arr

(1)

where wi for i¼ 1, 2, 3, 4, 5, 6 is the weight that each param-
eter has for Dyn, and

X6

i¼1

wi ¼ 1 (2)

4.1.2. Scheduling problem complexity
The complexity of the scheduling problem (SCpx) is a vec-
tor that is also critical in understanding the applicability of
different scheduling approaches because the method
selected for executing the PPST of a specific firm needs to
correspond with the complexity of the combinatorial prob-
lem at hand. This vector has been commonly studied by
Complexity Theory in Computer Science by identifying the
complexity of scheduling problems according to a complex-
ity hierarchy (see Appendices D and E in Pinedo 2016)
defined by the type of machine environment, the objective
function, and the number of additional constraints found in
the problem.

However, since a simple parametrization of SCpx would
be very difficult to build from this hierarchy because the
characterization is not linear, one way to operationalize this
vector would be to consider the notions from Complexity
Theory in a linear manner. The following parameters and
their corresponding values of complexity (in brackets) could
be used to measure SCpx:

� Number of individual jobs/orders/batches to be scheduled
(Jobs)

� Machine environment (ME) in order of complexity:
� Single machine [1]
� Parallel machines, flow-shop, open-shop [2]
� Flexible flow-shop, job-shop [3]
� Flexible job-shop [4]

� Number of additional constraints (Cons), e.g. sequence-
dependent setup times or due date constraints

� Scheduling objective (Obj) in order of complexity:
� Total completion time [1]
� Maximum lateness, sum (average) of cycle times [2]
� Weighted sum (average) of cycle times, sum (average)

of tardiness, sum of number of tardy jobs [3]
� Weighted sum (average) of tardiness, weighted sum

of number of tardy jobs [4]
� Multi-objective: sum of the scheduling objectives
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Similar to what we proposed with Dyn parameters, SCpx
parameters could be operationalized with values ranging
between 0 and 1 by linearly interpolating the values
between the minimum and maximum range, depending on
the sample. For instance:

SCpx ¼ v1Jobsþ v2ME þ v3Consþ v4Obj (3)

where vi for i¼ 1, 2, 3, 4 is the weight that each parameter
has for SCpx, and

X4

i¼1

vi ¼ 1 (4)

It is worth noting that there are many different alterna-
tives for the parameterization of Dyn and SCpx, even if we
consider the same parameters shown in (1) and (3). For
instance, the value of Cons could also depend on values
associated with the difficulty of handling the constraints that
are part of the environment as tight due dates and
sequence-dependent setup times create significantly more
challenging scheduling problems than shop floors with loose
due dates and permutation constraints.

4.1.3. Manufacturing environments classification
The classification of shop floors proposed by Wiers and Van
der Schaaf (1997) acknowledges the interaction between the
dynamism of the environment (uncertainty) and to some
extent incorporates the complexity of the environment by
taking into account the need to adapt to the dynamism and
complexity of the environment by giving autonomy to the

shop floor. Thus, their classification of shop floor types can
be used to capture the different combinations of dynamism
and complexity that are relevant for identifying applicable
scheduling approaches. However, instead of considering
shop floor autonomy, we consider scheduling complexity as
one of the two main vectors that characterize a shop floor
system, in addition to the dynamism (or uncertainty) of the
system, in order to classify manufacturing environments
types only by their characteristics and not by the scheduling
approaches needed to operate those systems.

Table 2 describes the four manufacturing environment
types and some of their representative characteristics, includ-
ing the expected general magnitudes for Dyn and SCpx.

This classification of manufacturing environments and its
parameterization into two vectors constitute the variable and
domain definition that will help describe the phenomenon
of production scheduling applicability.

4.2. Scheduling approaches

In this study, we consider a scheduling approach as any
method that helps to organize the production at the shop
floor level, even if no specific schedule is built. Next, we give
an overview of scheduling approaches based on the general
classifications proposed by Vieira, Herrmann, and Lin (2003)
and Ouelhadj and Petrovic’s (2009), and on the study of
computer-based manufacturing scheduling tools by Dios and
Framinan (2016).

4.2.1. Control-theoretic approaches
The basis of this approach is to control the flow entering or
moving through the shop floor by imposing a production
rhythm, irrespective of which job is arriving or being proc-
essed. Examples of control-theoretic techniques are Kanban,
CONWIP (CONstant Work in Process) and DBR (Drum-Buffer-
Rope) (see Jodlbauer and Huber 2008 for an overview). Due
to the limited informational needs and straightforward mech-
anisms of these methods, control-theoretic techniques can
be more easily implemented in the daily operations of shop
floors and directly improve performance, as demonstrated by
several case studies (Mukhopadhyay and Shanker 2005;
Pegels and Watrous 2005; Leonardo et al. 2017).

4.2.2. Predictive approaches
Predictive scheduling is the subject of traditional scheduling
theory (Conway, Maxwell, and Miller 1967) as its focus is on
building schedules by assigning jobs to capacity-constrained
resources and allocating resource time-slots to each job,
solving a static-deterministic problem. Predictive scheduling
assumes that disturbances or incoming jobs will not change
the predicted execution of the schedule (see, e.g. Framinan
and Perez-Gonzalez 2015; Shen, Dauz�ere-P�er�es, and Neufeld
2018); consequently, no constant monitoring of the shop
floor status is needed for this approach. Algorithmic techni-
ques using exact (Blazewicz, Dror, and Weglarz 1991) and
heuristic (Ruiz 2016) methods are used to build these
detailed schedules.

Table 2. Manufacturing environment types and characteristics.

Type SCpx Dyn Representative characteristics

Social Low Low High volume, low product variety
(very low demand uncertainty);
flow-shop with no specific
constraints

Smooth High Low Medium to high volume, low product
variety; low demand uncertainty;
(flexible) flow-shop with few
additional constraints, e.g.
permutation

Socio-technical Low High Low volume, high product variety
(customized products); make-to-
order or engineer-to-order with
loose due dates, highly dynamic
job arrivals; job-shop or flexible
job-shop with some additional
constraints, e.g. in-tree
precedence, sub-resources
(additional tools or specialized
workers), setup-times; variable
processing times and possibility of
machine breakdowns; somewhat
unpredictable job routings

Stress High High Medium volume, low to medium
product variety; make-to-stock and
make-to-order with tight due
dates; somewhat dynamic job
arrivals; flow-shop or flexible flow-
shop with some constraints, such
as lot-sizing and sequence-
dependent setup times; variable
processing and setup times
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4.2.3. Reactive approaches
Reactive scheduling tries to cope with high levels of environ-
mental uncertainty by refraining to build complete sched-
ules. Instead, with reactive scheduling one generates job
processing sequences on each resource and/or controls
which jobs are released to the shop floor. Complete, detailed
schedules are not built with this approach but sequencing
lists are dynamically created/updated for each resource every
time a job arrives on the shop floor or a resource queue.
Dispatching/priority rules (see, e.g. Romero-Silva et al. 2018;
Xiong et al. 2017) and workload control techniques (see, e.g.
G�omez Paredes et al. 2022; Th€urer, Stevenson, and Silva
2011) are reactive methods addressing dynamic scheduling
problems, either deterministic or stochastic. While some of
these techniques are easy to implement due to the limited
amount of data needed to operate them [e.g. the SPT rule
(Qi, Bard, and Yu 2006)], some others require continuous
monitoring of the shop floor status (see, e.g. Branke,
Hildebrandt, and Scholz-Reiter 2015), which could limit
their usability.

4.2.4. Predictive-reactive approaches
Predictive-reactive scheduling generates complete schedules
that are constantly subject to revision by different reschedul-
ing policies, e.g. periodic or event-driven rescheduling, to
cope with disturbances in the shop floor status and with job
arrivals (see, e.g. Framinan, Fernandez-Viagas, and Perez-
Gonzalez 2019; Dong and Maravelias 2021). Predictive-
reactive scheduling needs a feedback loop between the
shop floor monitoring system and the scheduling module to
be able to update the schedules in the face of disturbances
or job arrivals, limiting their applicability in certain manufac-
turing environments with low monitoring capabilities.
Furthermore, because of the dynamic and possibly stochastic
nature of the problems faced by predictive-reactive
approaches, simulation might be used to test the feasibility
of the schedule instances (Lin and Chen 2015) or as a plat-
form to test complex operating rules (Jeong and Kim 1998).

4.2.5. Scheduling performance
A scheduling approach that has a good fit with a specific
manufacturing environment will produce the best perform-
ance for the manufacturing firm. Scheduling theory has con-
sidered many objectives related to either the optimal
utilization of resources (e.g. minimize idle times, minimize
the makespan, minimize costs) or the optimal delivery per-
formance (e.g. minimize tardiness, lateness or number of
tardy jobs). On top of aiming to optimize their delivery and
resource performance (Romero-Silva, Hurtado, and Santos
2016), manufacturing firms are also concerned with keeping
quality and inventory levels in check, reaching their service
agreements, and even having a smooth and stable produc-
tion (Tomotani and de Mesquita 2018).

Thus, performance in the case of this conceptual frame-
work is concerned with the performance of the shop floor
over the long run, including any performance goal(s) that are
relevant for the manufacturing firm.

4.3. The fit between manufacturing environments and
scheduling approaches

Previous studies have already proposed fits between manu-
facturing environment types and some planning methods
(Jonsson and Mattsson 2003; Tenhi€al€a 2011; Wiers and Van
der Schaaf 1997)—but not for scheduling approaches—
where it has been shown that the ‘one-size-fits-all’ approach
is not applicable in the case of planning activities. In this sec-
tion, we extend those previous conclusions into the domain
of the PPST by proposing fits between manufacturing envi-
ronments and scheduling approaches that will result in a
better performance of the PPST.

Previous studies that focused on the implementation of
control-theoretic techniques, such as Kanban (Mukhopadhyay
and Shanker 2005) and DBR (Benavides and Van Landeghem
2015), in companies with low product variety and simple flow
shops with no additional constraints (low Dyn and SCpx values)
have found that the implementation of control-theoretic
methods has significantly improved the performance of their
selected case studies. So very simple manufacturing environ-
ments only need simple control techniques to manage their
production operations. From this, we can formulate that:

Proposition 1: Control-theoretic approaches fit the schedul-
ing requirements of Social shops.

As the Social shop turns into a Socio-technical shop
owing to greater dynamism and low scheduling problem
complexity, it would also need a more dynamic scheduling
approach to deal with the constant changes in the state of
the shop floor. In this regard, Hendry, Huang, and Stevenson
(2013) suggest that Work Load Control (WLC) techniques are
suitable techniques to use in Socio-technical systems.
Furthermore, dispatching rules (Rajendran and Holthaus
1999) have also been found to be very useful for scheduling
very dynamic environments, such as semi-conductor wafer
fabrication factories (Johri 1993; M€unch, Fowler, and Mason
2013; Cigolini 1999). Since some studies (Lu, Huang, and
Yang 2011; Slotnick 2011) have found that shop floor per-
formance depends on a correlation between the use of dif-
ferent WLC techniques and dispatching rules, the use of
simple WLC policies and simple dispatching rules are suitable
approaches for addressing the PPST in Socio-technical shops.
Therefore, we state that:

Proposition 2: Reactive approaches fit the scheduling
requirements of Socio-technical shops.

Transitioning from a stable and simple shop to a shop
floor that has a more complex scheduling problem but a
non-dynamic environment will create the need for a more
accurate approach that can deal with the complexities of the
problem. In this case, exact algorithmic methods, such as
Mixed-Integer Linear Programming (Pinedo 2016), can be
used to schedule and optimize production as the demand is
highly predictable and jobs/orders could be planned in a
static manner (see, e.g. Kaçmaz, Alakaş, and Eren 2019;
Zanda, Zuddas, and Seatzu 2018). However, if the scheduling
problem becomes more complex because of a more complex
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machine environment or the presence of additional con-
straints, heuristic methods (Ruiz and St€utzle 2007) may be
needed to build feasible and well-performing schedules,
even though they are not optimal.

On the other hand, when SCpx is high and Dyn starts to
increase to an intermediate level, a more flexible scheduling
method is needed to cope with the constant rescheduling
and schedule repairs. Thus, for this type of system, con-
straint-based programming could be more applicable
(Hvolby and Steger-Jensen 2010; Salido, Garrido, and Bart�ak
2008; Novas and Henning 2010) in building or repairing com-
plete, feasible schedules in the presence of continuous
changes in the state of the system. Based on this, we sug-
gest that:

Proposition 3: Predictive approaches fit the scheduling
requirements of Smooth shops.

Very dynamic systems with intermediate levels of SCpx
need more complex scheduling techniques than simple WLC
and dispatching rules because of the presence of particular
constraints. For instance, shop floors with dynamic environ-
ments and sequence-dependent setup times require special-
ized and specifically designed dispatching rules to cope with
this particular constraint (see, e.g. Sharma and Jain 2014;
Pickardt and Branke 2012; Lee, Bhaskaran, and Pinedo 1997).
Moreover, the hyper-heuristic development of dispatching
rules (Pickardt et al. 2013; Branke et al. 2016; Korytkowski,
Wi�sniewski, and Rymaszewski 2013), which are specifically
designed for particular manufacturing plants, is also an
applicable scheduling approach for this type of complex and
dynamic system.

Finally, the most complex system to schedule, i.e. highly
dynamic and complex Stress shops, needs the most sophisti-
cated approaches to carry out the PPST. For these systems,
expert systems with either knowledge-based rules (L�opez-
Santana and Ramiro 2016) or machine learning (Priore et al.
2014; Aytug et al. 1994) and simulation-based scheduling
(see, e.g. Parthanadee and Buddhakulsomsiri 2010; Yang,
Kuo, and Chang 2004) can be a good fit since coping with

these realities requires a thorough understanding of the
interactions among the various possible system states (due
to the high dynamism and complexity) and scheduling meth-
odologies. Thus:

Proposition 4: Predictive-reactive approaches fit the sched-
uling requirements of Stress shops.

Figure 2 summarizes the proposed fits by plotting the
scheduling techniques that fit different manufacturing envi-
ronments according to their Dyn and SCpx values. It is worth
noting that in Figure 2 we illustrated specific scheduling
techniques instead of general scheduling approaches
because some scheduling techniques can be categorized as
two different scheduling approaches depending on the mon-
itoring capabilities used by the shop floor. For instance, con-
straint-based programming can be regarded as a predictive
approach to solve a static and deterministic problem or as a
predictive-reactive approach to solve a dynamic and deter-
ministic problem. In addition, since the practical scheduling
task is not only concerned with building feasible schedules
but also with monitoring and control, different scheduling
approaches need different levels of monitoring support in
order to be executed. For instance, control-theoretic method-
ologies only need information about the general amount of
work-in-process (WIP) and the global output of the system;
whereas simple dispatching rules and static-deterministic
schedules (exact and heuristic algorithms) need information
about the input (arriving jobs), WIP (jobs already scheduled
and in-process) and output (completed jobs) to be able to
build schedules.

More complex environments, on the other hand, need a
higher level of monitoring because the high Dyn and SCpx
require a continuous update of information regarding job
arrivals and characteristics, machine status (availability in
terms of breakdowns and queues), and job traceability
(needed because of alternative routings, stochasticity of
processing and setup times, and queueing).

The monitoring needs of each of the seven scheduling
methodologies identified in Figure 2 are summarized in

Figure 2. Fit between manufacturing environment types and scheduling approaches.
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Figure 3, where we suggest the level of monitoring needed
to support the specific scheduling approach required for a
particular manufacturing environment.

These proposed fits define the relationships among the
variables of the phenomenon of production scheduling
applicability and describe a part of what can be regarded as
theory predictions, as we are suggesting that the perform-
ance of scheduling tasks will depend on a correct fit.
However, we think that another layer of variables and inter-
actions is needed to completely predict the phenomenon of
the applicability of practical production scheduling. We
develop such a layer in the next section to further generate
the theoretical predictions of the conceptual framework.

4.4. Complexity of the PPST

Even though we characterized the scheduling problem com-
plexity (SCpx) that schedulers face in their daily operations,
that variable only accounts for the complexity of the com-
binatorial problem at hand. However, the dynamism of the
environment creates an additional layer of complexity to the
PPST as the scheduler faces continuous changes in the state
of the shop floor. To account for this overall complexity, we
consider an additional research variable called complexity of
the PPST (PPSTCpx). From the characteristics described in
Table 2, it can be seen that Stress shops are the most com-
plex manufacturing environments to schedule because of
their particular combination of high Dyn and high SCpx,
while Social shops have a very simple PPST. Thus, the vectors
Dyn and SCpx can be used to assess PPSTCpx in the following
manner:

PPSTCpx ¼ Dyn2 þ SCpx2 (5)

The two vectors constituting PPSTCpx have a quadratic
term because we wanted to model how higher values of
Dyn and SCpx have a much greater impact on PPSTCpx than
lower values in order to represent the greater effort needed
to schedule those environments. Furthermore, since both
Dyn and SCpx have a range of values between 0 and 1 for

any given sample of manufacturing firms, PPSTCpx¼ 2 repre-
sents a straightforward way of identifying a manufacturing
environment with the highest PPST complexity, while
PPSTCpx ¼ 0 represents a manufacturing environment with
no complexity; for this reason, the PPSTCpx term in equation
(5) is not modelled as a quadratic term.

A final consideration regarding PPSTCpx is that it is not
linearly related to the manufacturing environment types pre-
viously described, as this match depends on the combination
of values for Dyn and SCpx, i.e. four quadrants with high-low
values for Dyn and SCpx. However, PPSTCpx is directly related
to the complexity of the scheduling approach that is needed
to solve the PPST because firms with higher PPSTCpx will
need more sophisticated methods for scheduling, as the next
section will explain.

4.5. Compounding effects of capacity utilization and fit
on performance

Sousa and Voss (2008), basing their work on Strategic-Choice
Theory (Child 1972), suggested that some companies do not
need to use fitting practices to reach good levels of perform-
ance because they use slack capacity, which creates a margin
of operational execution for managers. We pick up this idea
and propose that the effect of resource capacity utilization,
influenced by the fit of scheduling approaches, is highly sig-
nificant in the performance of manufacturing systems. We
consider utilization as an additional relevant research variable
because utilization is a factor that characterizes the operating
conditions of a shop floor in a straightforward manner by
reflecting various contextual factors in the shop floor, such
as the capacity, the demand rate, and even the effect of
some constraints, in one single value. Utilization is normally
measured as the percentage capacity utilization of the bot-
tleneck(s) (Chakravorty and Atwater 2006; Roser, Nakano, and
Tanaka 2002), or in the case of very dynamic shop
floors with no clear bottleneck, the average capacity utiliza-
tion of the shop floor (Bertrand and Van Ooijen 2002;
Bertrand 1983).

Figure 3. Monitoring needs for different manufacturing environment types.
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In this regard, Queueing Theory (Gross et al. 2008) shows
that the performance of stochastic systems exponentially
deteriorates as resource capacity utilization (q) approaches
100%, a behavior that is very clearly represented by
Throughput-Cycle Time curves (Yang, Ankenman, and Nelson
2007). We argue that the effect of the fit on performance
also depends on the values of q, as it has been shown that
sequencing methods have a bigger impact on performance
when utilization is high (Romero-Silva et al. 2018; Romero-
Silva and Hern�andez-L�opez 2020). For instance, a bad fit will
be irrelevant when resources are under-utilized but it will
have a high impact on performance when the resources
have very little slack, resulting in additional exponential
deterioration of performance. This compounding effect that
resource capacity utilization and fit have on performance
could be greatly intensified by higher PPSTCpx values since a
bad fit in highly complex scheduling tasks will produce
much worse results than in moderately complex PPSTs.

Therefore, there is a triple interaction among (a) a good
fit between the manufacturing environment (located using
the ‘coordinates’ of Dyn and SCpx) and the scheduling
approach; (b) the scheduling task complexity, described by
the sum of squares of Dyn and SCpx; and (c) resource cap-
acity utilization percentage (q). We contend that this com-
plex interaction describes the performance of the scheduling
task in practical terms. This completes the last step in the
conceptual model building (generate theory predictions).
Therefore, we propose the following:

Proposition 5: The scheduling performance of a manufactur-
ing firm is influenced by a compounding relationship among
(a) the fit of scheduling approaches and manufacturing envi-
ronments, (b) the complexity of the scheduling task, and (c)
capacity utilization.

This proposition suggests that the relevance of
Scheduling Theory on scheduling practice can only be
assessed through the lens of Contingency Theory since it is
only through identifying a fit between scheduling
approaches and manufacturing environments that one could
assess the applicability of scheduling proposals. Moreover,
the proposition represents a good starting point for predict-
ing the impact of the applicability of production scheduling
on the relative performance of manufacturing firms.

It is worth noting that the utilization of resources is not con-
stant at all times, particularly in markets where the mean
demand rate is variable (Cheevaprawatdomrong and Smith
2004; Boysen, Bock, and Fliedner 2013). Thus, the relevance of
a fitting scheduling approach will vary over time, depending
on the utilization levels. On the other hand, the constitutional
vectors of the manufacturing environment (Dyn and SCpx) are
factors that seldom vary over time, as they are constituent
parts of the structure of the system, which may be more diffi-
cult to change (Romero-Silva, Santos, and Hurtado 2018).

5. Case studies illustrating the relevance of the
conceptual framework

To exemplify how certain scheduling approaches might
be more effective in addressing the PPST of different

manufacturing environments, we present three representa-
tive companies with different manufacturing environments: a
Smooth shop (case A, presented in Section 5.1); a company
with two very different production units, namely, a Social
shop (case B1) and a Stress shop (case B2), both presented
in Section 5.2; and a Socio-technical shop (case C, presented
in Section 5.3). Along with the description of the characteris-
tics of the manufacturing environment for each case study,
we also use our conceptual framework to propose which
scheduling approach could have the best fit to address the
scheduling task of each case study.

These three companies were considering installing a com-
mercial APS in order to support their scheduling task and
they were part of a larger study where the scheduling needs
and manufacturing environments of 50 companies (see the
Appendix for an overview of the manufacturing environ-
ments characterization of the shop floors in that sample)
were investigated (see Romero-Silva, Hurtado, and Santos
2016 for more details on the data collection approach of the
case studies). These companies were selected because they
embody different manufacturing environments and schedul-
ing needs, and because of their willingness to be subject to
a more detailed analysis, as they were assessing the applic-
ability of using an APS.

5.1. A make-to-stock/make-to-order company
producing bricks

The first example (case A) is a case of a firm producing bricks
for furnace walls at steelworks. The manufacturing process
consisted of five stages, but the most critical step was press-
ing the powder material into bricks. There were five unre-
lated parallel (Jungwattanakit et al. 2008) presses. The
scheduler assigned to each press a sequence of batches,
depending on the materials and the dimensions of each
batch. No specific assignments were made for any other
resources, as the sequence used in the presses was carried
over the other resources.

The most important feature of this scheduling problem
was that, if the dimensions or materials deviated from a pre-
vious batch, a setup/changeover time was needed. The big-
ger the deviation was, the longer setup time was needed.
This is commonly described in scheduling theory as
sequence-dependent setup times (Allahverdi, Gupta, and
Aldowaisan 1999). In addition, the company worked under a
combination of make-to-order and make-to-stock strategies.
Some of their demand was stable enough to forecast with
some certainty but a portion of the orders arrived without
notice and was too specific in terms of dimensions to be
predictable. Taking these characteristics into account, the
scheduler organized the weekly production by combining
make-to-stock and make-to-order batches of similar materials
and dimensions into the same press and time slots. The
scheduler tried to find a balance between maximizing the
service level in the make-to-stock market and minimizing the
number of tardy jobs in the make-to-order market.
Unplanned events, such as rush orders or machine break-
downs were rescheduled on a daily basis.
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Thus, in this production line, Dyn was low and SCpx was
very high, i.e. a Smooth shop. These values would place this
company in the bottom-right corner of Figure 2, suggesting
that a scheduling approach based on heuristics or metaheur-
istics will be fitting for this environment. Since this
manufacturing environment is very heavily dependent on
sequence-dependent setup times, a heuristic procedure that
takes into account this constraint (see, e.g. Lee, Bhaskaran,
and Pinedo 1997; Lee and Pinedo 1997) is an applicable
methodology for this company.

Regarding its monitoring needs, this company needs
information about the incoming jobs, the overall WIP, and
the production output because the applicable scheduling
approach in this production line does not need a full online
monitoring system to track every single step of the process
or the full updated status of the shop.

5.2. Production of refrigeration industrial equipment

This firm produced industrial equipment for refrigeration
tasks in two different lines, one for standard equipment and
the other for completely customized, engineered-to-order
(Gosling and Naim 2009) equipment. Since the first line (case
B1) produced four standard products, production was organ-
ized in an assembly line. The four standard products were
produced in constant cyclic production runs where no sched-
uling needed to be carried out. Case B1 exemplifies a Social
shop. Only a basic production control was needed for this
line. Thus, only the daily production output was measured
because Dyn and SCpx were very low (bottom-left corner in
Figure 2). For case B1, a good fit was irrelevant for the per-
formance of the production unit as both Dyn and PPSTCpx
were zero.

The other production line (case B2) was a little more com-
plex as it produced engineered-to-order equipment where
each order was unique. Order sizes were commonly 1, but
some orders included up to 4 pieces of equipment. Some
orders required two days to be completed, while other
orders required four weeks, so there was a large disparity in
the manufactured products. There were 7 possible stages for
this production line, but each order required different rout-
ings, depending on the characteristics of the equipment. In
addition, each stage could be completed by multiple opera-
tors/machines, so the flow pattern was characterized as a
hybrid job shop. Processing times for some operations, e.g.
welding, cutting, and fabrication, were long and stochastic,
because of the intricacies of building completely
unique components.

Despite this, job arrival dynamism was not very high, as
the potential market was small and the total flow time of
orders was long. Furthermore, capacity constraints were diffi-
cult to predict since the bottleneck of the system depended
on the mix of orders and some assembly operations could
be carried out concurrently by two workers, which is a char-
acteristic not normally taken into account by traditional
scheduling approaches. Thus, there was a complex intercon-
nection between worker and task assignments, which com-
plicated the scheduling task.

For this production line, the scheduler was concerned
with minimizing the number of tardy jobs, while taking into
account the complexity of worker and task assignments, mul-
tiple precedence constraints and concurrent operations. In
this case, Dyn was moderate and SCpx was relatively high,
resulting in a moderate value of PPSTCpx, which places this
company in the middle-right position in Figure 2. Case B2 is
a representative example of a Stress shop.

Mainly due to the complexity of the constraints, but also
due to the constant rescheduling efforts needed to adjust
for stochastic processing times, we argue that this produc-
tion line has a good fit with constraint-based programming
scheduling. Moreover, since most commercial APSs generate
schedules with constraint-based programming (Hvolby and
Steger-Jensen 2010), this production line is one of the com-
panies that could actually take advantage of using a com-
mercial APS. From Figure 3 we can see that this company
needs an online system that is able to acquire data about
the progress of the jobs at each station in order to schedule
incoming jobs or reassign workers, mainly because of unex-
pected lengths of processing times (stochasticity).

The impact of using a fitting scheduling approach in this
production line is important because both capacity utilization
and PPSTCpx are high.

5.3. Production of pumps for different markets

The third example (case C) is a company that produced
make-to-order (from a standard catalogue of products) and
engineered-to-order pumps in small to medium batches. Due
to the high variety of pump dimensions, materials and appli-
cations, this firm had very different, alternative machines for
each stage of the manufacturing process, which consisted of
five stages (all pumps completed the same flow pattern).
Thus, this plant had excess capacity to be able to deal with
the high mix of products and volumes. Since this company
worked under a make-to-order strategy, its main objective
was to fulfil the orders on time (minimize the number of
tardy jobs). The plant was equipped with a Manufacturing
Execution System (MES—Meyer, Fuchs, and Thiel 2009),
which allowed the workers to register all the starting and fin-
ishing times per job and allowed management to have com-
plete traceability of jobs and worker productivity.

This company’s management team wanted to install an
APS to have better worker assignments (to increase product-
ivity), as this task was assigned manually by the scheduler in
a spreadsheet. However, since the Dyn of this company was
very high and the SCpx was low (top-left corner in Figure 2),
a full, detailed schedule was not needed to successfully carry
out production in this firm. This is even more evident when
taking into account that both machine and worker capacity
utilizations were not high, limiting the need to implement
tight schedules. Therefore, there was enough capacity slack
(designed to have increased flexibility) to be able to organize
production with simple dispatching rules, e.g. SPT (Shortest
Processing Time) or AVPRO (Average Processing Time)
(Jayamohan and Rajendran 2000).
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Interestingly, this company did not require the level of
shop floor monitoring that was already installed in the MES
to carry out an effective scheduling approach, since imple-
menting simple dispatching rules only requires input, WIP
and output information (see Figure 3) and not an online sys-
tem. Moreover, using a fitting scheduling approach for this
environment would not be as critical to the production per-
formance of this company as it would be for other more
highly utilized companies because of its slack capacity.
Scheduling performance will increase if they use SPT or
AVPRO instead of a control-theoretic approach, e.g. CONWIP,
but we contend that it will not be critical to reach a good
production performance because of the low capacity utiliza-
tion of the shop floor.

6. Research implications

We believe that the two principal vectors—dynamism and
scheduling problem complexity—proposed in this paper for
the characterization of manufacturing environments can be
very useful to identify the scheduling approaches needed to
better support the scheduling task of different manufactur-
ing environment types and to provide a good measure,
through their combined effect, for estimating the complexity
(and effort) of carrying out the practical production schedul-
ing task. In this regard, this paper provides a framework to
help increase the applicability of scheduling research by for-
mulating propositions on the best fits between scheduling
approaches and manufacturing environment types, and pro-
vides three case studies exemplifying such fits.

As other authors have suggested, traditional scheduling
theory, i.e. deterministic and static scheduling, is not applic-
able in every context, but it is relevant in some specific
scheduling scenarios where dynamism is low and scheduling
complexity is high. Such a scenario was presented in
Section 5.1.

While traditional scheduling theory has been closing the
gap with practice in the last 20 years by incorporating more
relevant features into its proposals, as the studies by
Fuchigami and Rangel (2018) and Harjunkoski et al. (2014)
show, more research is needed in the field of production
scheduling that considers more realistic complex environ-
ments, such as the ones found in Stress shops. A representa-
tive example of a Stress shop was described in Section 5.2
(case B2), where we suggested that a good fit for this manu-
facturing environment, which had high scheduling problem
complexity and moderate dynamism, was constraint-based
programming scheduling, which is the approach normally
implemented in APS. Furthermore, we highlighted the fact
that, to be able to carry out this scheduling approach, this
company would need to be supported by an online monitor-
ing and control activity since it will need frequent updates
on the status of the manufacturing environment. Thus, the
conceptual framework presented in this study also stresses
the importance of considering the monitoring capabilities of
production lines—issue (b), the simplification of the practical
scheduling task—in practical scheduling studies, particularly
since it has been suggested (Romero-Silva, Hurtado, and

Santos 2016) that very few companies possess the monitor-
ing capabilities needed to support complex schedul-
ing approaches.

In addition, some approaches directly related to the prac-
tice of scheduling, such as control-theoretic techniques and
WLC and dispatching rules, can perform the task of support-
ing the execution of the PPST in other system types that are
ill-suited to be supported by the traditional scheduling
approach. For instance, the Socio-technical shop described in
Section 5.3 (case C), with high dynamism but low scheduling
problem complexity, had a manufacturing environment that
is suitable for using simple WLC and dispatching rules;
whereas a very simple control-theoretic technique can be
used for case B1 (presented in Section 5.2) due to its very
low complexity and dynamism. Case C also highlights the
fact that some companies might not need to have an online
monitoring system to carry out their scheduling task, as a
lower level of monitoring is sufficient to support the suitable
scheduling approach. Thus, at least in terms of scheduling
needs, some companies might save some resources in terms
of monitoring capacity investment (Romero-Silva and
Hern�andez-L�opez 2020) by matching scheduling and moni-
toring needs.

We also think that the implications of Proposition 5, which
describes the compounding effect that resource capacity util-
ization and fit have on scheduling performance, could be very
relevant in the current market context because many firms
could either elect to have a higher capacity slack in order to
focus on a customer-responsive strategy (Schonberger and
Brown 2017) or follow a cost-oriented strategy through
focused factories (Ketokivi and Jokinen 2006) with high work-
loads to maximize resource capacity utilization and reduce
operating costs.

According to this proposition, the performance of shop
floors electing the cost-oriented strategy will greatly depend
on selecting a fitting scheduling approach, whereas shop
floors that have adopted a customer-responsive approach
will be less dependent on having a good fit because of an
increased slack capacity. The influence of a good fit on the
performance of (focused) factories with high capacity utiliza-
tion percentages could be even more significant if the com-
pany elects to have operational excellence as a competitive
advantage since the scheduling task has a highly significant
effect on the resulting performance of a firm’s operations.

Thus, it is only through the lens of Contingency Theory
that we can understand the applicability of production
scheduling because the scheduling performance of shop
floors does not depend on using the most complex schedul-
ing technique but the most fitting. This study follows the
tradition of OM studies using an inferential detailed design
in Contingency Theory by identifying the operational con-
texts in which certain practices (scheduling approaches) will
work best in terms of scheduling performance through a sys-
tems-based approach to fits.

Paradoxically, as we present this conceptual model, there
is evidence that the industry is trending towards more
under-utilized scenarios on a global scale, as the utilization
percentage for the manufacturing sector capacity in the US
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has steadily declined to a level of around 75% in recent
years (Board of Governors of the Federal Reserve System
2022a)—probably due to an increase in flexibility, as the
total production capacity has also significantly increased
(Board of Governors of the Federal Reserve System 2022b).
However, companies with variable and seasonal mean
demand rates could still find that a good fit is relevant to
their operations, despite having a non-critical average annual
capacity utilization percentage, because surges in demand
will produce higher utilization scenarios where the schedul-
ing task could greatly influence performance.

Additionally, companies electing a customer-responsive
strategy are faced with higher dynamism because of the
unpredictability of demand. To accommodate that demand,
they need more complex manufacturing processes. This com-
bination of two realities results in greater complexity in the
practical production scheduling task, which we contend also
has a very significant influence on the relevance of having a
good fit to have a good performance.

Therefore, manufacturing firms could use this conceptual
framework (summarized in Figures 2 and 3) to support the
decision-making process regarding whether to invest in a fit-
ting scheduling approach and monitoring system, depending
on the relevance and perceived improvement in performance
that would come from implementing such an approach.

Finally, even though the objective of this paper was to
help to close the theory-practice gap by overcoming issue
(c), i.e. lack of relevance of the traditional scheduling
approach to all manufacturing environments (see Table 1),
some researchers could be motivated by the current study
to further investigate issues (a) and (b) due to the need to
empirically test which parameters in the scheduling environ-
ment characterization are actually relevant for different
scheduling approaches. The conceptual framework proposed
in this study sheds some light on the need to develop more
methodologies that are fitting for a variety of scheduling
environments, particularly very dynamic and constrained
environments, since it explicitly acknowledges that traditional
scheduling theory is only applicable to a small portion of
companies. This highlights the need to further close the gap
in terms of issue (a).

Overall, we believe that the propositions presented here
could constitute a point of departure for a future research
agenda to help to close the theory-practice gap in practical
production scheduling research.

7. Conclusions

The objective of this study was to propose a conceptual
framework of the applicability of production scheduling.
Since previous studies have suggested that the practical pro-
duction scheduling task is closely associated with the manu-
facturing context, we applied the constructs of Contingency
Theory to explain that scheduling is only applicable when
particular manufacturing environment types are matched
with fitting scheduling approaches. Based on previous litera-
ture, we provide an overview of the theory-practice gap in
scheduling and suggest that this gap has been caused by

three issues: (a) a simplification of scheduling problems, (b) a
simplification of the practical scheduling task as a decision
process, and (c) the lack of relevance of the traditional
scheduling approach to all manufacturing environments.

Furthermore, we argue that manufacturing environments
can be characterized by the dynamism of the state of the
system and the complexity of the scheduling problem when
considering the applicability of production scheduling, and
that the combination of both factors, in turn, results in a
measurement of scheduling task complexity. This character-
ization of a manufacturing environment is then used to iden-
tify which scheduling approaches are most suitable for
different manufacturing environments and what level of
monitoring support will be needed to execute the fitting
scheduling approach. To exemplify this proposal, we pre-
sented three cases studies of manufacturing firms with differ-
ent characteristics and scheduling needs.

Finally, we suggest that the relevance of a fitting schedul-
ing approach on the performance of a firm depends on the
overall capacity utilization of the resources in the firm, as
companies with under-utilized resources would not necessar-
ily require a fitting scheduling approach because of available
capacity slack. On the other hand, the performance of com-
panies with high levels of resource utilization will be more
dependent on using a fitting scheduling approach, as highly
utilized factories are more sensitive to the use of scheduling
methodologies and could have a smaller margin in which to
conduct sub-optimal operations.

7.1. Limitations of the study

The most significant limitation of this study is the lack of
empirical support. As both Wacker (1998) and Christensen
(2006) suggest, producing evidence of any conceptual model
is a necessary step. While we based our results on the par-
ameterization of real companies using the cases of three
manufacturing firms in terms of Dyn, SCpx and PPSTCpx, the
information about their range of operating utilization values
was only a rough estimate. Moreover, no information was
obtained regarding the actual selection of scheduling
approaches by each company and the performance of such
companies was not measured. Thus, only suggestions regard-
ing the fitting scheduling approaches and a hypothesized
model of the relative performance were provided.

Even though more empirical research is needed to sup-
port our propositions, the logical structure of our proposals,
which are based on a synthesis of previous studies, is thor-
ough and the proposals can be used as a starting point for
studying the issue of production scheduling applicability and
further proposing a normative theory. Furthermore, the case
studies presented here provide interesting examples of the
relevance of our conceptual model and serve as a motivation
for other researchers to study this phenomenon further.

In addition, despite the fact that we have presented a
broad picture of how to model the two vectors that charac-
terize the manufacturing environment types, the parameter-
ization of these vectors (illustrated in the Appendix), was
only an exercise conducted for exemplification purposes,

276 R. ROMERO-SILVA ET AL.



since the sample was not designed to specifically collect all
the data needed to parameterize Dyn and SCpx. Moreover,
we did not explicitly define the actual Dyn and SCpx values
that a firm should have in order to classify it as a certain
type of manufacturing environment.

It is worth noting that we only considered the combined
effect of resource capacity utilization and fit on the schedul-
ing performance, while firm performance considerations
were left out. It is possible that in some environments the
profits generated by an increase in performance due to
increased revenue caused by better service and due to
reduced costs do not make up for the costs of implementing
a fitting scheduling approach (see, e.g. Romero-Silva and
Hern�andez-L�opez 2020; Kjellsdotter and Jonsson 2010).

7.2. Future research opportunities

More empirical research is needed to validate Propositions
1–4, which are summarized in Figures 2 and 3, and
Proposition 5. Thus, a cross-sectional multiple-case-study/sur-
vey is needed to assess the relevance of each proposed par-
ameter in terms of the characterization of the manufacturing
environment types, i.e. how important each parameter is for
describing Dyn or SCpx. A selection of companies with differ-
ent scheduling environments and different scheduling
approaches will be needed to assess the performance of dif-
ferent environment-approach combinations, as this study
only presented examples of four production units and did
not empirically test the propositions. While the four produc-
tion unit examples presented here provide the reader with
clear examples of how to identify a good fit between a man-
ufacturing environment and a scheduling approach (and
monitoring capabilities), they only illustrate a limited number
of scheduling approaches, so future research should also
focus on including all the scheduling approaches pre-
sented here.

It is worth noting that even though we proposed expert
systems to solve the most complex manufacturing environ-
ment type of Stress shops, expert systems have proven to
be very difficult to implement on real shop floors (Kerr
1992) and have fallen into disuse in recent years in this
field (Romero-Silva and de Leeuw 2021). However, the
technological developments over the last years in terms of
the supervision and control of manufacturing systems, e.g.
Manufacturing Execution Systems (Meyer, Fuchs, and Thiel
2009) and Smart Factories (Kusiak 2018; Mittal et al. 2018),
along with recent advances in Machine Learning (Jordan
and Mitchell 2015), could be very helpful in providing
expert systems with a better technical framework for sup-
porting the PPST. Thus, future research could focus on the
feasibility that expert systems could have for supporting
the scheduling task in the current technological and organ-
izational context.

To empirically test the validity of this conceptual frame-
work, future research will need to design a questionnaire
specifically designed to capture data regarding the parame-
ters of Dyn and SCpx. The complexity of this type of data
requires that the questionnaire be administered on-site, at

the plant facilities, so the researcher has first-hand know-
ledge about the manufacturing process and the scheduling
task (see, e.g. Kemppainen, Veps€al€ainen, and Tinnil€a 2008;
Romero-Silva, Hurtado, and Santos 2016). Results from the
questionnaire will provide insights into the relevance of each
parameter (see Sections 4.1.1 and 4.1.2) in defining manufac-
turing environment types (see Section 4.1.3) as well as pro-
viding information about the weight values (wi and vi)
associated with each parameter. With this information, then
the manufacturing environment type of each company can
be identified to measure and assess its performance (e.g.
lead times, due date fulfilment, or service levels) resulting
from the scheduling approach used by the company.
Furthermore, information about the shop floor capacity util-
ization needs to be included in future studies to investigate
whether capacity utilization in fact plays a role in the rele-
vance of the fit between scheduling environments and
scheduling approaches.

The empirical validation of the conceptual framework
can also be carried out through longitudinal case studies
using action research, where researchers can first study the
performance of a company under a scheduling approach
previously selected by the firm to subsequently implement
a more suitable scheduling approach (based on Figure 2)
and measure its performance for the same manufacturing
environment. Both cross-sectional and longitudinal case
studies can be carried out within the same research, which
could result in a more insightful and interesting investiga-
tion (see, e.g. Koufteros, Verghese, and Lucianetti 2014).

Future research will also need to investigate what thresh-
olds of Dyn and SCpx define the manufacturing environment
types, e.g. Stress shops could be defined by Dyn> 0.4 and
SCpx> 0.4, and whether those thresholds are independent of
each other or have an interaction, e.g. the higher the SCpx of
a production line is, the lower Dyn will need to be to define
a Stress shop.

Whereas the effect of fitting practices on the performance
of certain company environments has been previously
studied (Sousa and Voss 2008; Tenhi€al€a and Helki€o 2015),
more research is needed to develop an analysis of the trade-
offs between implementing fitting practices/technologies
and the impact that implementation may have on the finan-
cial health of the company (see, e.g. Ketzenberg and
Metters 2019).

Finally, a comprehensive theory of the effects of capacity
utilization on the overall strategic position of companies is
needed, beyond its effect on the relevance of the fits
between scheduling environment and approach, as there
have been very few studies in operations management
regarding the role of capacity utilization (or slack) on the
performance and competitive advantage of manufacturing
firms (see, e.g. Abdi and Labib 2017).
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Appendix

Based on the sample of 50 manufacturing firms considered in Romero-Silva, Hurtado, and Santos (2016), Figure A1 shows an example of the pro-
posed characterization of manufacturing systems. Depending on the characteristics of each firm, values for Dyn, SCpx and PPSTCpx (represented by
the y-axis, x-axis and values inside the circles in Figure 1, respectively) were calculated and plotted. Moreover, as there were various firms with the
same exact values for Dyn and SCpx, the frequency of each pair of values was represented by the size of the area of the plot circles in Figure A1.

It is worth noting that for this exercise, the values for w and v weights from equations (1) and (3) were equal to 1. In addition, the threshold val-
ues to set the combination of values between Dyn and SCpx that will define a type of manufacturing system were set to 0.4, resulting from the par-
ticular characteristics of this sample of firms.

In this sample, the Social shop was the most prevalent system, with 21 cases, followed by the Smooth shop (11), the Socio-technical shop (10)
and the Stress shop (8). Interestingly, none of the firms considered in this sample had a PPSTCpx value near 2, a result that suggests that stress shops
that have highly complex environments to schedule were rare for this particular sample.

Figure A1. Classification and PPSTCpx values of 50 manufacturing firms according to their Dyn and SCpx values.
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