Belloni, E. (E.)

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Molecular characterization of a t(1;3)(p36;q21) in a patient with MDS. MEL1 is widely expressed in normal tissues, including bone marrow, and it is not overexpressed in the t(1;3) cells
    (Nature Publishing Group, 2004) Pelicci, P.G. (Pier G.); Lo-Coco, F. (Francesco); Lahortiga, I. (Idoya); Gasparini, P. (P.); Vazquez, I. (Iria); Larrayoz, M.J. (María J.); Belloni, E. (E.); Calasanz-Abinzano, M.J. (Maria Jose); Odero, M.D. (Maria Dolores); Aguirre-Ena, X. (Xabier)
    Patients with myeloid malignancies and either the 3q21q26 syndrome or t(1;3)(p36;q21) have been reported to share similar clinicopathological features and a common molecular mechanism for leukemogenesis. Overexpression of MDS1/EVI1 (3q26) or MEL1/PRDM16 (1p36), both members of the PR-domain family, has been directly implicated in the malignant transformation of this subset of neoplasias. The breakpoints in both entities are outside the genes, and the 3q21 region, where RPN1 is located, seems to act as an enhancer. MEL1 has been reported to be expressed in leukemia cells with t(1;3) and in the normal uterus and fetal kidney, but neither in bone marrow (BM) nor in other tissues, suggesting that this gene is specific to t(1;3)-positive MDS/AML. We report the molecular characterization of a t(1;3)(p36;q21) in a patient with MDS (RAEB-2). In contrast to previous studies, we demonstrate that MEL1, the PR-containing form, and MEL1S, the PR-lacking form, are widely expressed in normal tissues, including BM. The clinicopathological features and the breakpoint on 1p36 are different from cases previously described, and MEL1 is not overexpressed, suggesting a heterogeneity in myeloid neoplasias with t(1;3).
  • Thumbnail Image
    NUP98 is fused to HOXA9 in a variant complex t(7;11;13;17) in a patient with AML-M2
    (Elsevier, 2005) Valgañon, M. (Mikel); Di-Fiore, P.P. (Pier Paolo); Zudaire, I. (Isabel); Lahortiga, I. (Idoya); Vizmanos-Pérez, J.L. (José Luis); Vazquez, I. (Iria); Larrayoz, M.J. (María J.); Belloni, E. (E.); Mateos, M.C. (María C.); Calasanz-Abinzano, M.J. (Maria Jose); Odero, M.D. (Maria Dolores); Aguirre-Ena, X. (Xabier); Saez, B. (Borja)
    The t(7;11)(p15;p15.4) has been reported to fuse the NUP98 gene (11p15), a component of the nuclear pore complex, with the class-1 homeobox gene HOXA9 at 7p15. This translocation has been associated with myeloid leukemias, predominantly acute myeloid leukemia (AML) M2 subtype with trilineage myelodysplastic features, and with a poor prognosis. The derived fusion protein retains the FG repeat motif of NUP98 N-terminus and the homeodomain shared by the HOX genes, acting as an oncogenic transcription factor critical for leukemogenesis. We report here a new complex t(7;11)-variant, i.e., t(7;11;13;17)(p15;p15;p?;p1?2) in a patient with AML-M2 and poor prognosis. The NUP98-HOXA9 fusion transcript was detected by RT-PCR, suggesting its role in the malignant transformation as it has been postulated for other t(7;11)-associated leukemias. No other fusion transcripts involving the NUP98 or HOXA9 genes were present, although other mechanisms involving several genes on chromosomes 13 and 17 may also be involved. To our knowledge, this is the first t(7;11) variant involving NUP98 described in hematological malignancies.
  • Thumbnail Image
    FISH analysis of hematological neoplasias with 1p36 rearrangements allows the definition of a cluster of 2.5 Mb included in the minimal region deleted in 1p36 deletion syndrome
    (Springer Verlag, 2005) Hernandez, J.M. (J. M.); Pelicci, P.G. (Pier G.); Zudaire, I. (Isabel); Roman, J.P. (José P.); Novo-Villaverde, F. J. (Francisco Javier); Lahortiga, I. (Idoya); Gasparini, P. (P.); Vazquez, I. (Iria); Belloni, E. (E.); Calasanz-Abinzano, M.J. (Maria Jose); Odero, M.D. (Maria Dolores)
    Rearrangements in the distal region of the short arm of chromosome 1 are recurrent aberrations in a broad spectrum of human neoplasias. However, neither the location of the breakpoints (BP) on 1p36 nor the candidate genes have been fully determined. We have characterized, by fluorescence in situ hybridization (FISH), the BP in 26 patients with hematological neoplasias and 1p36 rearrangements in the G-banding karyotype. FISH allowed a better characterization of all samples analyzed. Nine cases (35%) showed reciprocal translocations, 15 (58%) unbalanced rearrangements, and two (7%) deletions. We describe two new recurrent aberrations. In 18 of the 26 cases analyzed the BP were located in band 1p36, which is 25.5 Mb long. In 14 of these 18 cases (78%) and without distinction between myeloid and lymphoid neoplasias, the BP clustered in a 2.5 Mb region located between 1p36.32 and the telomere. Interestingly, this region is contained in the 10.5 Mb cluster on 1p36.22-1pter defined in cases with 1p36 deletion syndrome. The 2.5 Mb region, located on 1p36.32-1pter, has a higher frequency of occurrence of tandem repeats and segmental duplications larger than 1 kb, when compared with the 25.5 Mb of the complete 1p36 band. This could explain its proneness for involvement in chromosomal rearrangements in hematological neoplasias.