Mendizabal-Samper, J. (Jaizki)
- Publications
- item.page.relationships.isContributorAdvisorOfPublication
- item.page.relationships.isContributorOfPublication
12 results
Search Results
Now showing 1 - 10 of 12
- Alarm collector in smart train based on ethereum blockchain events-log.(IEEE, 2021-09) Mendizabal-Samper, J. (Jaizki); Adin-Marcos, I.(Iñigo); Goya Odriozola, J. (Jon); Añorga-Benito, J.(Javier); Figueroa-Lorenzo, S. (Santiago); Arrizabalaga-Juaristi, S. (Saioa)The European Union is moving toward the "smart" era having as one of the key topics the smart mobility. What is more, the European union (EU) is moving toward Mobility as a Service (MaaS). The key concept behind MaaS is the capability to offer both the traveler's mobility and goods' transport solutions based on travel needs. For example, unique payment methods, intermodal tickets, passenger services, freight transport services, etc. The introduction of new services implies the integration of many Internet-of-Things (IoT) sensors. At this point, security gains a key role in the railway sector. Considering an environment where sensor data are monitored from sensor events, and alarms are detected and emitted when events contain an anomaly, this document proposes the development of an alarms collection system, which ensures both traceability and privacy of these alarms. This system is based on Ethereum blockchain events-log, as an efficient storage mechanism, which guarantees that any railway entity can participate in the network, ensuring both entity security and information privacy.
- Implementation of simultaneous multi-parameter monitoring based in LC-type passive wireless sensing with partial overlapping and decoupling coils(MDPI AG, 2019) De No Legarán, J.(Joaquín); Mendizabal-Samper, J. (Jaizki); Perez-Hernandez, N. (Noemí); Sancho-Seuma, J.I. (Juan Ignacio)Inductor–capacitor (LC) passive wireless sensors are widely used for remote sensing. These devices are limited in applications where multiparameter sensing is required, because of the mutual coupling between neighboring sensors. This article presents two effective decoupling techniques for multiparameter sensing, based on partially overlapped sensors and decoupling coils, which, when combined, reduce the mutual coupling between sensors to near zero. A multiparameter LC sensor prototype with these two decoupling mechanisms has been designed, simulated, and measured. This prototype is capable of simultaneously measuring four parameters. The measurements demonstrate that the changes in capacitance in one individual sensor do not affect the measurements of the other sensors. This principle has been applied to simultaneous wear sensing using four identical wear sensors.
- A review of the evolution of the integrity methods applied in GNSS(IEEE, 2020) Pérez, A. (Alejandro); de-Miguel, G. (Gorka); Zabalegui-Landa, P. (Paul); Mendizabal-Samper, J. (Jaizki); Adin-Marcos, I.(Iñigo); Goya Odriozola, J. (Jon)The use of GNSS technologies has been spreading over time up to a point in which a huge diversity of applications require their use. Due to this demand, GNSS has turned into a more reliable technology, as multiple aspects of it have evolved. Integrity has become a vital aspect of being considered when using GNSS. The following document gathers and shows different aspects of integrity in terms of GNSS. The paper mainly focuses on the description of different receiver autonomous integrity monitoring methods. For this purpose, basic concepts and possible GNSS error sources (and their corresponding solutions) are introduced. Afterward, an explanation and a classification of the integrity monitoring techniques is given, where the fault detection and exclusion methods and different protection level computation formulas are analyzed.
- An adjusted propagation model for ITS-G5 communications for improving the location of RSUs in real V2I deployments(Elsevier, 2024-02) Iparraguirre-Gil, O. (Olatz); Mendizabal-Samper, J. (Jaizki); Iturbe-Olleta, N. (Nagore); Bilbao, J. (Jon); Brazález-Guerra, A. (Alfonso)The future of mobility is cooperative, connected, and autonomous leading to new technological challenges in the development of Cooperative Intelligent Transport Systems (C-ITS). Therefore, Vehicle to Everything (V2X) and, more specifically, Vehicle to Infrastructure (V2I) deployments are key to enabling these features around the highways as well as along the cities. The communication range of the RoadSide Units (RSUs) is one of the most important aspects when implementing Vehicle-to-Infrastructure (V2I) communications as it has a direct impact on efficiency and the economy of the installation. The aim is to maximise the communication range with the minimum number of RSUs and to optimise the deployments, thus having a realistic simulation tool is key. To be realistic, simulations rely on adequate propagation models, which ideally would adapt to the environment without a high computational need. Therefore, an appropriate characterisation of the different V2X environments as well as a simple and versatile propagation model is an important instrument for deciding the location of the RSUs. In this paper, we characterise different environments for ITS-G5 communications and provide an adjusted propagation model with an α parameter that depends on the environment. Thus, eradicating the need to model the environment and the obstacles in it. For that purpose, a methodology for the modeling and characterisation of the ITS-G5 propagation model is proposed,after that the methodology is applied and the results validated. The methodology is presented and the characterisation of the ITS-G5 environments is made. Later, tests were carried out in different environments to measure how the signal power decreases with the distance. After that, the propagation model for ITS-G5 communications, specifically V2I communications, is presented along with the methodology applied to obtain it. Then, an α value is assigned to each environment. Finally, the validation is made by comparing our adjusted propagation model with other propagation models and applying the adjusted propagation model to a new RSU installation.
- Functional, thermal and EMC analysis for a safety critical analogue design applied to a transportation systems(Springer, 2011) De No Legarán, J.(Joaquín); Mendizabal-Samper, J. (Jaizki); Adin-Marcos, I.(Iñigo); Alvarado-Videira, U.(Unai); Melendez Lagunilla, J.(Juan); Del Portillo San Miguel, J.(Jon)Safety-critical equipment depends on the study of functional, thermal, EMC (Electromagnetic Compatibility) and RAMS (Reliability, Availability, Maintainability and Safety) fields. The variation of one area characteristic could result in a failure to fulfil safety requirements. Traditionally, thermal, EMC or RAMS issues were only considered once the design was done. This paper proposes a novel analogue equipment design methodology by studying these areas dependently from the beginning of the design process. Each area requirements and design parameters and the relation among them are defined qualitatively and quantitatively. Based on these dependences among all the areas, the cross-influence of each parameter variation in other areas requirements is demonstrated. The obtained results are intended to aid the fulfilment of requirements of the design of any safety critical analogue circuit, and to help designers to know beforehand the consequences of any change in the design, saving time and money. The application of this methodology in a SIL 2 RF transmitter is shown and the improvement and worsening of requirements depending on the parameters variation is exposed.
- Freight wagon digitalization for condition monitoring and advanced operation(2023) Amengual, J. (Jon); Pérez, A. (Alejandro); de-Miguel, G. (Gorka); Zabalegui-Landa, P. (Paul); Mendizabal-Samper, J. (Jaizki); Adin-Marcos, I.(Iñigo); Losada, M. (Markos); Moya, I. (Iker)Traditionally, freight wagon technology has lacked digitalization and advanced monitoring capabilities. This article presents recent advancements in freight wagon digitalization, covering the system's definition, development, and field tests on a commercial line in Sweden. A number of components and systems were installed on board on the freight wagon, leading to the intelligent freight wagon. The digitalization includes the integration of sensors for different functions such as train composition, train integrity, asset monitoring and continuous wagon positioning. Communication capabilities enable data exchange between components, securely stored and transferred to a remote server for access and visualization. Three digitalized freight wagons operated on the Nassjo-Falkoping line, equipped with strategically placed monitoring sensors to collect valuable data on wagon performance and railway infrastructure. The field tests showcase the system's potential for detecting faults and anomalies, signifying a significant advancement in freight wagon technology, and contributing to an improvement in freight wagon digitalization and monitoring. The gathered insights demonstrate the system's effectiveness, setting the stage for a comprehensive monitoring solution for railway infrastructures. These advancements promise real-time analysis, anomaly detection, and proactive maintenance, fostering improved efficiency and safety in the domain of freight transportation, while contributing to the enhancement of freight wagon digitalization and supervision.
- Map-aided software enhancement for autonomous GNSS complementary positioning system for railway(2019) Fernandez-Ros, N. (Nerea); Goya, J. (Jon); Mendizabal-Samper, J. (Jaizki); Adin-Marcos, I.(Iñigo); De Miguel-Aramburu, G.(Gorka); Arrizabalaga-Juaristi, S. (Saioa)Independently on the business case addressed, one of the main drawbacks of the railway use cases that need continuous Global Navigation Satellite Systems data is the lack of availability for the 100% of the time of the journey. Additionally, the integrity assessment of the position estimation given is also mandatory for safety critical applications. Thus, tunnels and multipath effects are one of the most challenging situations for the continuous positioning systems. In this context, an autonomous on-board Complementary Positioning System has been proposed to overcome the limitation of Global Navigation Satellite System based positioning systems. This paper proposes a positioning enhancement solution by means of fusing data from the satellite navigation system and inertial measurement units. That hybrid solution provides higher availability and accuracy to the positioning specially on known blocked scenarios, such as tunnels, or urban canyons, by means of a novel environment aware map aided software technique named Known Blocked Scenarios algorithm... This paper describes the Complementary Positioning System and the field test carried out in a challenging environment to validate the enhancement proposed by the authors, which demonstrate the benefits that this system has in known harsh environments for railways.
- Residual based fault detection and exclusion methods applied to Ultra-Wideband navigation.(Elsevier, 2021-07) de-Miguel, G. (Gorka); Zabalegui-Landa, P. (Paul); Mendizabal-Samper, J. (Jaizki); Adin-Marcos, I.(Iñigo); Goya Odriozola, J. (Jon); Moya, I. (Iker)Global Navigation Satellite System (GNSS) has become the main technology in terms of navigation technologies, as it ensures a worldwide absolute outdoor positioning. The transportation sector employs this technology to obtain a position, velocity and time solution for the corresponding outdoor application. When talking about indoor positioning, nevertheless, GNSS becomes an unreliable navigation technology, as the below-noise signals get obstructed. In these cases, the Ultra-Wideband (UWB) technology can be used as a navigation solution, as its anchor trilateration based radiofrequency positioning resembles GNSS's principle and, depending on the anchor location, it can be used for indoor positioning. However, just like other radiofrequency based technologies, UWB is vulnerable to interferences and the multipath effect. With the aim of overcoming these drawbacks, this article discusses how to apply Fault Detection and Exclusion (FDE) techniques to avoid using faulty anchors when employing UWB in indoor/urban environments such as tunnels or train stations.
- An overview of current IP Network emulators for the validation of railways wireless communications(IEEE, 2020) de-Miguel, G. (Gorka); Mendizabal-Samper, J. (Jaizki); Goya Odriozola, J. (Jon); Fernández-Berrueta, N. (Nerea); Añorga, J. (Javier); Arrizabalaga-Juaristi, S. (Saioa)Communication technologies are in continuous evolution and as well, the different applications making use of them. In order to succeed with the roll-out of the communication-based applications, it is required that the communications technologies are intensively tested and validated before deployment. Current strategies for testing and validation cover field tests and laboratory tests. Railways is also taking advantage of the communication technologies evolution, and therefore, there is a need for having testing and validation strategies adapted to the railway environment, especially for safety-critical applications. Field tests and laboratory tests also apply in Railways. In the frame of laboratory tests, this paper includes an overview of different network emulators existing currently in the market. Furthermore, an analysis of the gaps of the network emulators with regards to the needs of the railways environment is also included. The goal of this paper is to show that network emulators are a flexible cost-effective solution for communication technologies testing purposes. Additionally, this paper also shows that there is a need to adapt current emulators to the railway environment in order to test and validate the future railway applications based on communication technologies.
- Freight train in the age of self-driving vehicles. A taxonomy review(2022) Ramirez, R.C. (Roberto Carlos); Mendizabal-Samper, J. (Jaizki); Adin-Marcos, I.(Iñigo); Alvarado-Videira, U.(Unai); Brazález-Guerra, A. (Alfonso)Recently, the first successful deployment of a fully automated commercial freight train operation was announced. This is the world's first automated heavy-duty and long-haul rail network. It's an impressive achievement, but why has it taken so long to achieve this when driverless urban metros have been in operation for more than 50 years? Although urban metros and freight trains are vehicles moved on rails, their operation and environment differ significantly. Metros operate in closed rail networks, while freight trains operate in open rail networks. However, the same taxonomy is often used to classify automation interchangeably in both environments. This paper provides context and an overview of driving automation in freight rail and reviews the existing taxonomies. This paper starts by providing context with an overview of the general process of driving a vehicle by delimiting its different stages. Next, we describe the overall process of driving a freight train to show the distinctive features of its setup and operation. In this analysis, we will point out the essential differences between open and closed rail networks, and the tasks that can potentially be automated. Additionally, we examine the evolution of level-based automation taxonomies and review those that have been proposed exclusively for driving automation in open and closed railway networks. Our objective is to provide a thorough summarization of the most relevant taxonomies to advance the definition of a suitable taxonomy and framework to classify automation capabilities in rail freight transport and identify some complex challenges ahead.