Baldauf, W. (Wilhelm)
- Publications
- item.page.relationships.isContributorAdvisorOfPublication
- item.page.relationships.isContributorOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
- Modeling the impact on wheel sensor readouts by Eddy Current Brakes installed in high-speed trains(IEEE, 2021-06) Stark, O.(Oliver); Benli, K. (Kami); Gurruchaga-Echeverria, K. (Kizkitza); Baldauf, W. (Wilhelm); Lancaster, G. (Gavin); Sancho-Seuma, J.I. (Juan Ignacio); Valderas Gazquez, D.(Daniel); Del Portillo San Miguel, J.(Jon)This paper presents a model to anticipate the impact of Eddy Current Brakes (ECBs) installed in high-speed trains on the readouts of rail-side wheel sensors. The purpose is to anticipate false positive readouts of train wheels when traversing, one of the main obstacles for full ECB deployment. The ECB type EWB 154 from Knorr-Bremse and Wheel Sensor types RSR180 and RSR123 from Frauscher Sensor Technology are represented in a comprehensive model, integrating LTSpice and CST Microwave Studio. The wheel sensor predicted readout error is 4% compared to measurements when DC current is not applied to the ECB (passive case). It is demonstrated that the RSR180 is not compatible with ECBs, whereas the RSR123 is. The impact of active (DC current fed) brakes is analyzed when performing running tests with a high-speed ICE 3 train equipped with ECBs. The model is adjusted to study the saturation of the rail and ECB pole cores. The extra damping of the wheel sensor fingerprint is modeled by an extra 6% drop that may well be applicable to passive tests in a laboratory setting to shift to active tests without actually performing them. In this way, cost and time would be saved. Based on the model outcomes, a test bench is recommended for laboratory tests to emulate active behavior.
- Modelling Eddy Current Brake emissions for electromagnetic compatibility with signaling devices in high speed railways(IEEE, 2017-11) Stark, O.(Oliver); Mesa, I. (Iker); Adin-Marcos, I.(Iñigo); Lehmann, H. (Henry); Baldauf, W. (Wilhelm); Lancaster, G. (Gavin); Valderas Gazquez, D.(Daniel); Del Portillo San Miguel, J.(Jon)This paper presents a model that anticipates the emissions from eddy current brakes (ECBs) installed in high-speed trains. The emissions are computed in the 10 KHz-1.3 MHz range, where trackside signaling devices operate and issues related to electromagnetic compatibility have arisen, hindering ECB's promise of full deployment. The electromagnetic model provides a transfer function in the frequency domain between the nondesired harmonic currents produced by the train power supply and the subsequent radiated emissions by the ECBs at the trackside. The model includes the influence of the on-board ECB system's electric circuitry on the three-dimensional field computation of the electromagnets by a cosimulation approach (circuit and electromagnetic cross talk). After the data are postprocessed, the simulated results are compared with the results of an extensive measurement campaign on board a high-speed ICE 3 train equipped with ECBs. The high correlation makes it possible to anticipate ECB emissions in order to save costly on-track test runs, to suggest ECB design strategies and to provide safe limits when the worst cases occur.