Ocholi, R.A. (Reuben A.)

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Comparative performance of lateral flow immunochromatography, iELISA and Rose Bengal tests for the diagnosis of cattle, sheep, goat and swine brucellosis
    (Public Library of Science (PLoS), 2019) Bertu, W.J. (Wilson J.); Miguel, M.J. (María Jesús) de; Moriyon, I. (Ignacio); Smits, H.L. (Henk L.); Gusi, A.M. (Amahyel M.); Muñoz, P. (Pilar); Dieste-Pérez, L. (Lucía); Blasco, J.M. (J. M.); Ocholi, R.A. (Reuben A.)
    Background Brucellosis is a world-wide extended zoonosis that causes a grave problem in developing economies. Animal vaccination and diagnosis are essential to control brucellosis, and the need for accurate but also simple and low-cost tests that can be implemented in low-infrastructure laboratories has been emphasized. Methodology We evaluated bovine, sheep, goat and swine lateral flow immunochromatography assay kits (LFA), the Rose Bengal test (RBT) and a well-validated protein G indirect ELISA (iELISA) using sera of Brucella culture-positive and unvaccinated brucellosis free livestock. Sera from cattle vaccinated with S19 and RB51 brucellosis vaccines were also tested. Finally, we compared RBT and LFA using sera of white Fulani cattle of unknown bacteriological status from a brucellosis endemic area of Nigeria. Results and conclusions Although differences were not statistically significant, RBT showed the highest values for diagnostic sensitivity/specificity in cattle (LFA, 96.6/98.8; RBT, 98.9/100; and iELISA, 96.6/100) and the iELISA yielded highest values in sheep (LFA, 94.0/100; RBT, 92.0/100; iELISA, 100/100), goats (LFA, 95.7/96.2; RBT, 97.8/100; iELISA, 100/100) and pigs (LFA, 92.3/100; RBT, 92.3/100; iELISA, 100/100). Vaccine S19 administered subcutaneously interfered in all tests but conjunctival application minimized the problem. Although designed not to interfere in serodiagnosis, vaccine RB51 interfered in LFA and iELISA but not in the RBT. We found closely similar apparent prevalence results when testing the Nigerian Fulani cattle by RBT and LFA. Although both RBT and LFA (showing similar diagnostic performance) are suitable for small laboratories in resource-limited areas, RBT has the advantage that a single reagent is useful in all animal species. Considering these advantages, its low cost and that it is also useful for human brucellosis diagnosis, RBT might be a good choice for resource-limited laboratories.
  • Thumbnail Image
    Isolation of brucella strains in cattle from sedentary and nomadic communities and its public health implication
    (Elsevier, 2020) Bertu, W.J. (Wilson J.); Moriyon, I. (Ignacio); Ducrotoy, M.J. (Marie J.); Gusi, A.M. (Amahyel M.); Ngulukun, S. (S.); Ocholi, R.A. (Reuben A.)
    Brucellosis is a highly infectious disease caused by bacteria of the genus brucella affecting animals leading to high economic loss and an impediment to livestock exportation. It also infects man with serious public health consequences. The disease is one of the world’smost important neglected tropical zoonoses. Brucellosis is considered endemic in Nigeria and current information on isolation in sedentary and nomadic cattle is required. We carried out an active surveillance in sedentary cattle in Kachia Grazing Reserve (KGR), Kaduna State and in nomadic communities on the Jos Plateau to isolate brucella organisms and carry out phenotypic and molecular characterization of the isolates to species level
  • Thumbnail Image
    Brucellosis as an emerging threat in developing economies: lessons from Nigeria
    (Public Library of Science, 2014) Bertu, W.J. (Wilson J.); Moriyon, I. (Ignacio); Ducrotoy, M.J. (Marie J.); Welburn, S.C. (Susan C.); Gusi, A.M. (Amahyel M.); Bryssinckx, W. (Ward); Ocholi, R.A. (Reuben A.)
    Nigeria is the most populous country in Africa, has a large proportion of the world’s poor livestock keepers, and is a hotspot for neglected zoonoses. A review of the 127 accessible publications on brucellosis in Nigeria reveals only scant and fragmented evidence on its spatial and temporal distribution in different epidemiological contexts. The few bacteriological studies conducted demonstrate the existence of Brucella abortus in cattle and sheep, but evidence for B. melitensis in small ruminants is dated and unclear. The bulk of the evidence consists of seroprevalence studies, but test standardization and validation are not always adequately described, and misinterpretations exist with regard to sensitivity and/or specificity and ability to identify the infecting Brucella species. Despite this, early studies suggest that although brucellosis was endemic in extensive nomadic systems, seroprevalence was low, and brucellosis was not perceived as a real burden; recent studies, however, may reflect a changing trend. Concerning human brucellosis, no studies have identified the Brucella species and most reports provide only serological evidence of contact with Brucella in the classical risk groups; some suggest brucellosis misdiagnoses as malaria or other febrile conditions. The investigation of a severe outbreak that occurred in the late 1970s describes the emergence of animal and human disease caused by the settling of previously nomadic populations during the Sahelian drought. There appears to be an increasing risk of reemergence of brucellosis in sub-Saharan Africa, as a result of the co-existence of pastoralist movements and the increase of intensive management resulting from growing urbanization and food demand. Highly contagious zoonoses like brucellosis pose a threat with far-reaching social and political consequences.
  • Thumbnail Image
    If You're Not Confused, You're Not Paying Attention: Ochrobactrum Is Not Brucella
    (2023) Bertu, W.J. (Wilson J.); Güler, L. (Leyla); Caswell, C.C. (Clayton C.); Araj, G.F. (George F.); Suárez-Esquivel, M. (Marcela); Lopez-Goñi, I. (Ignacio); Al-Dahouk, S. (Sascha); Roop, M. (Martin); Pembroke, J.T. (J. Tony); Chacon-Diaz, C. (Carlos); Middlebrook, E.A. (Edgar A.); Blasco, J.M. (José María); Loperena-Barber, M. (Maite); Keriel, A. (Anne); Salvador-Bescós, M. (Miriam); Dadar, M. (Maryam); O'Callaghan, D. (David); Moriyon, I. (Ignacio); De-Massis, F. (Frabizio); Altamirano-Silva, P. (Pamela); Barquero-Calvo, E. (Elías); Chaves-Olarte, E. (Esteban); Neubauer, H. (Heinrich); Whatmore, A.M. (Adrian M.); Wareth, G. (Gamal); De-Lima-Santos, R. (Renato); Arenas-Gamboa, A. (Ángela); Welburn, S.C. (Susan C.); Godfroid, J. (Jacques); Diaz, R. (Ramón); Splitter, G. (Gary); Garin-Bastuji, B. (B.); Gusi, A.M. (Amahyel M.); Sangari, F.J. (Félix Javier); Melzer, F. (Falk); Comerci, D.J. (Diego J.); Salcedo, S.P. (Suzana P.); Arce-Gorvel, V. (Vilma); Zuñiga-Ripa, A. (Amaia); Vizcaíno, N. (Nieves); Ruiz-Villalonos, N. (Nazaret); Erdenlig-Gürbilek, S. (Sevil); Muñoz, P. (Pilar); Tsolis, R.M. (Renee M.); Mora-Cartin, R. (Ricardo); Gorvel, J.P. (Jean Pierre); Ryan, M.P. (Michael P.); Iriarte-Cilveti, M. (Maite); Seimenis, A. (Aristarchos); Tabbaa, D. (Darem); Khames, M. (Mammar); Cravero, S. (Silvio); Celli, J. (Jean); Moran-Gilad, J. (Jacob); Bosilkovski, M. (Mile); Letesson, J.J. (Jean Jacques); Cook, E. (Elizabeth); Oñate-Landa, A.(A.); Moreno, E. (Edgardo); Ariza, J. (J.); Pandey, P. (Piyush); Escobar, G.I. (Gabriela I.); McGiven, J. (John); Guzman-Verri, C. (Caterina); Trangoni, M.D. (Marcos David); Pappas, G. (Georgios); Köhler, S. (Stephan); Foster, J.T. (Jeffrey T.); De-Boelle, X. (Xavier); Hernández-Mora, G. (Gabriela); Conde-Alvarez, R. (Raquel); Cadmus, S. (Simeon); Battelli, G. (Giorgio); Ficht, T.A. (Thomas A.); Hai, J. (Jiang); Jacob, N.R. (Nestor R.); Ocholi, R.A. (Reuben A.); Fernandez-Lago, L. (Luis)
    Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.