Sangari, F.J. (Félix Javier)
- Publications
- item.page.relationships.isContributorAdvisorOfPublication
- item.page.relationships.isContributorOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
- Generation of the Brucella melitensis ORFeome version 1.1.(Cold Spring Habor Laboratory Press, 2004) Lopez-Goñi, I. (Ignacio); Bolle, X. (Xavier) de; Bertin, N. (Nicolas); Moriyon, I. (Ignacio); Lamesch, P. (Philippe); Delroisse, J.M. (Jean Marc); Whatmore, A.M. (Adrian M.); Sangari, F.J. (Félix Javier); Hill, D.E. (David E.); Sequerra, R. (Reynaldo); MacMillan, A.P. (Alastair P.); Vidal, M. (Marc); Hao, T. (Tong); Garcia-Lobo, J.M. (Juan María); Lambert, C. (Christophe); Hallez, R. (Régis); Rual, J. J. (Jean François); Cutler, S.J. (Sally J.); Letesson, J.J. (Jean Jacques); Dupuy, D. (Denis); Vandenhaute, J. (Jean); Doucettte-Stamm, L. (Lynn); Bozak, S. (Stephanie); Dricot, A. (Amélie)The bacteria of the Brucella genus are responsible for a worldwide zoonosis called brucellosis. They belong to the alpha-proteobacteria group, as many other bacteria that live in close association with a eukaryotic host. Importantly, the Brucellae are mainly intracellular pathogens, and the molecular mechanisms of their virulence are still poorly understood. Using the complete genome sequence of Brucella melitensis, we generated a database of protein-coding open reading frames (ORFs) and constructed an ORFeome library of 3091 Gateway Entry clones, each containing a defined ORF. This first version of the Brucella ORFeome (v1.1) provides the coding sequences in a user-friendly format amenable to high-throughput functional genomic and proteomic experiments, as the ORFs are conveniently transferable from the Entry clones to various Expression vectors by recombinational cloning. The cloning of the Brucella ORFeome v1.1 should help to provide a better understanding of the molecular mechanisms of virulence, including the identification of bacterial protein-protein interactions, but also interactions between bacterial effectors and their host's targets.
- Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system(Public Library of Science, 2010) Lopez-Goñi, I. (Ignacio); Sangari, F.J. (Félix Javier); Viadas, C. (Cristina); Gorvel, J.P. (Jean Pierre); Rodriguez, M.C. (María Cruz); Garcia-Lobo, J.M. (Juan María)Background: The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/principal Findings: A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/significance: All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche.
- Evaluation of the effects of erythritol on gene expression in Brucella abortus(Public Library of Science, 2012) Lopez-Goñi, I. (Ignacio); Sangari, F.J. (Félix Javier); Viadas, C. (Cristina); Rodriguez, M.C. (María Cruz); Garcia-Lobo, J.M. (Juan María); Seoane, A. (Asunción)Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORF's constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol.
- If You're Not Confused, You're Not Paying Attention: Ochrobactrum Is Not Brucella(2023) Bertu, W.J. (Wilson J.); Güler, L. (Leyla); Caswell, C.C. (Clayton C.); Araj, G.F. (George F.); Suárez-Esquivel, M. (Marcela); Lopez-Goñi, I. (Ignacio); Al-Dahouk, S. (Sascha); Roop, M. (Martin); Pembroke, J.T. (J. Tony); Chacon-Diaz, C. (Carlos); Middlebrook, E.A. (Edgar A.); Blasco, J.M. (José María); Loperena-Barber, M. (Maite); Keriel, A. (Anne); Salvador-Bescós, M. (Miriam); Dadar, M. (Maryam); O'Callaghan, D. (David); Moriyon, I. (Ignacio); De-Massis, F. (Frabizio); Altamirano-Silva, P. (Pamela); Barquero-Calvo, E. (Elías); Chaves-Olarte, E. (Esteban); Neubauer, H. (Heinrich); Whatmore, A.M. (Adrian M.); Wareth, G. (Gamal); De-Lima-Santos, R. (Renato); Arenas-Gamboa, A. (Ángela); Welburn, S.C. (Susan C.); Godfroid, J. (Jacques); Diaz, R. (Ramón); Splitter, G. (Gary); Garin-Bastuji, B. (B.); Gusi, A.M. (Amahyel M.); Sangari, F.J. (Félix Javier); Melzer, F. (Falk); Comerci, D.J. (Diego J.); Salcedo, S.P. (Suzana P.); Arce-Gorvel, V. (Vilma); Zuñiga-Ripa, A. (Amaia); Vizcaíno, N. (Nieves); Ruiz-Villalonos, N. (Nazaret); Erdenlig-Gürbilek, S. (Sevil); Muñoz, P. (Pilar); Tsolis, R.M. (Renee M.); Mora-Cartin, R. (Ricardo); Gorvel, J.P. (Jean Pierre); Ryan, M.P. (Michael P.); Iriarte-Cilveti, M. (Maite); Seimenis, A. (Aristarchos); Tabbaa, D. (Darem); Khames, M. (Mammar); Cravero, S. (Silvio); Celli, J. (Jean); Moran-Gilad, J. (Jacob); Bosilkovski, M. (Mile); Letesson, J.J. (Jean Jacques); Cook, E. (Elizabeth); Oñate-Landa, A.(A.); Moreno, E. (Edgardo); Ariza, J. (J.); Pandey, P. (Piyush); Escobar, G.I. (Gabriela I.); McGiven, J. (John); Guzman-Verri, C. (Caterina); Trangoni, M.D. (Marcos David); Pappas, G. (Georgios); Köhler, S. (Stephan); Foster, J.T. (Jeffrey T.); De-Boelle, X. (Xavier); Hernández-Mora, G. (Gabriela); Conde-Alvarez, R. (Raquel); Cadmus, S. (Simeon); Battelli, G. (Giorgio); Ficht, T.A. (Thomas A.); Hai, J. (Jiang); Jacob, N.R. (Nestor R.); Ocholi, R.A. (Reuben A.); Fernandez-Lago, L. (Luis)Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.