Mendoza-Ferradas, F.J. (Francisco Javier)
- Publications
- item.page.relationships.isContributorAdvisorOfPublication
- item.page.relationships.isContributorOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
- Cardiometabolic characterization in metabolic dysfunction-associated fatty liver disease(2022) Perdomo-Zelaya, C.M. (Carolina M.); Bastarrika, G. (Gorka); Ampuero, J. (Javier); Frühbeck, G. (Gema); Ezponda, A. (Ana); Mendoza-Ferradas, F.J. (Francisco Javier); Escalada, J. (Javier); Nuñez-Cordoba, J.M. (Jorge M.)BackgroundTo better understand the patient's heterogeneity in fatty liver disease (FLD), metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed by international experts as a new nomenclature for nonalcoholic fatty liver disease (NAFLD). We aimed to evaluate the cardiovascular risk, assessed through coronary artery calcium (CAC) and epicardial adipose tissue (EAT), of patients without FLD and patients with FLD and its different subtypes. MethodsCross sectional study of 370 patients. Patients with FLD were divided into 4 groups: FLD without metabolic dysfunction (non-MD FLD), MAFLD and the presence of overweight/obesity (MAFLD-OW), MAFLD and the presence of two metabolic abnormalities (MAFLD-MD) and MAFLD and the presence of T2D (MAFLD-T2D). MAFLD-OW included two subgroups: metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). The patients without FLD were divided into 2 groups: patients without FLD and without MD (non-FLD nor MD; reference group) and patients without FLD but with MD (non-FLD with MD). EAT and CAC (measured through the Agatston Score) were determined by computed tomography. ResultsCompared with the reference group (non-FLD nor MD), regarding EAT, patients with MAFLD-T2D and MAFLD-MUHO had the highest risk for CVD (OR 15.87, 95% CI 4.26-59.12 and OR 17.60, 95% CI 6.71-46.20, respectively), patients with MAFLD-MHO were also at risk for CVD (OR 3.62, 95% CI 1.83-7.16), and patients with non-MD FLD did not have a significantly increased risk (OR 1.77; 95% CI 0.67-4.73). Regarding CAC, patients with MAFLD-T2D had an increased risk for CVD (OR 6.56, 95% CI 2.18-19.76). Patients with MAFLD-MUHO, MAFLD-MHO and non-MD FLD did not have a significantly increased risk compared with the reference group (OR 2.54, 95% CI 0.90-7.13; OR 1.84, 95% CI 0.67-5.00 and OR 2.11, 95% CI 0.46-9.74, respectively). ConclusionMAFLD-T2D and MAFLD-OW phenotypes had a significant risk for CVD. MAFLD new criteria reinforced the importance of identifying metabolic phenotypes in populations as it may help to identify patients with higher CVD risk and offer a personalized therapeutic management in a primary prevention setting.
- Epicardial and liver fat implications in albuminuria: a retrospective study(Springer, 2024) Perdomo-Zelaya, C.M. (Carolina M.); Martin-Calvo, N. (Nerea); Ezponda, A. (Ana); Mendoza-Ferradas, F.J. (Francisco Javier); Bastarrika, G. (Gorka); García-Fernández, N. (Nuria); Herrero, J.I. (José Ignacio); Colina, I. (Inmaculada); Escalada, J. (Javier); Frühbeck, G. (Gema)Background Albuminuria is considered an early and sensitive marker of kidney dysfunction, but also an independent cardiovascular risk factor. Considering the possible relationship among metabolic liver disease, cardiovascular disease and chronic kidney disease, we aimed to evaluate the risk of developing albuminuria regarding the presence of epicardial adipose tissue and the steatotic liver disease status. Methods A retrospective long-term longitudinal study including 181 patients was carried out. Epicardial adipose tissue and steatotic liver disease were assessed by computed tomography. The presence of albuminuria at follow-up was defined as the outcome. Results After a median follow up of 11.2 years, steatotic liver disease (HR 3.15; 95% CI, 1.20–8.26; p = 0.02) and excess amount of epicardial adipose tissue (HR 6.12; 95% CI, 1.69–22.19; p = 0.006) were associated with an increased risk of albuminuria after adjustment for visceral adipose tissue, sex, age, weight status, type 2 diabetes, prediabetes, hypertriglyceridemia, hypercholesterolemia, arterial hypertension, and cardiovascular prevention treatment at baseline. The presence of both conditions was associated with a higher risk of developing albuminuria compared to having steatotic liver disease alone (HR 5.91; 95% CI 1.15–30.41, p = 0.033). Compared with the first tertile of visceral adipose tissue, the proportion of subjects with liver steatosis and abnormal epicardial adipose tissue was significantly higher in the second and third tertile. We found a significant correlation between epicardial fat and steatotic liver disease (rho = 0.43 [p < 0.001]). Conclusions Identification and management/decrease of excess adiposity must be a target in the primary and secondary prevention of chronic kidney disease development and progression. Visceral adiposity assessment may be an adequate target in the daily clinical setting. Moreover, epicardial adipose tissue and steatotic liver disease assessment may aid in the primary prevention of renal dysfunction.