Merlini, G. (G.)

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Diagnosis, treatment, and response assessment in solitary plasmacytoma: updated recommendations from a European Expert Panel
    (BioMed Central, 2018) Moreau, P. (Philippe); Kristinsson, S.Y. (S. Y.); Delforge, M. (M.); Sezer, O. (O.); Engelhardt, M. (Monika); Bladé, J. (Joan); Merlini, G. (G.); Zweegman, S. (Sonja); Heusschen, R. (R.); Zamagni, E. (Elena); Ocio, E.M. (Enrique M.); Ludwig, H. (Heinz); Rosiñol, L. (Laura); Beksac, M. (Meral); Touzeau, C. (C.); Paiva, B. (Bruno); Abildgaard, N. (N.); Caers, J. (Jo); Terpos, E. (Evangelos); Leleu, X. (Xavier)
    Solitary plasmacytoma is an infrequent form of plasma cell dyscrasia that presents as a single mass of monoclonal plasma cells, located either extramedullary or intraosseous. In some patients, a bone marrow aspiration can detect a low monoclonal plasma cell infiltration which indicates a high risk of early progression to an overt myeloma disease. Before treatment initiation, whole body positron emission tomography–computed tomography or magnetic resonance imaging should be performed to exclude the presence of additional malignant lesions. For decades, treatment has been based on high-dose radiation, but studies exploring the potential benefit of systemic therapies for high-risk patients are urgently needed. In this review, a panel of expert European hematologists updates the recommendations on the diagnosis and management of patients with solitary plasmacytoma.
  • Thumbnail Image
    International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM)
    (2020) Gonzalez-Calle, V. (Veronica); Durie, B. (B.); Hansson, M. (Markus); Ukropec, J. (Jon); Usmani, S.Z. (Saad Z.); Merlini, G. (G.); Zamagni, E. (Elena); Min, C.K. (Chang-Ki); Qi, M. (Ming); Ludwig, H. (Heinz); Hajek, R. (R.); Mateos, M.V. (María Victoria); De-Larrea, C.F. (Carlos Fernández); Esteves, G. (Graça); Kumar, S. (Shaji); Gozzetti, A. (A.); Morgan, G.J. (Gareth J.); Geraldes, C. (Catarina); Kyriakou, C. (Charalampia); Goldschmidt, H. (Hartmut); Kim, B.S. (Byung-Su); Dimopoulos, M.A. (Meletios A.); Kastritis, E. (Efstathios); Weiss, B.M. (Brendan M.); Fantl, D. (Dorotea); Rajkumar, S.V. (S. Vincent); San-Miguel, J.F. (Jesús F.); Leleu, X. (Xavier); Garderet, L. (Laurent)
    Smoldering multiple myeloma (SMM) is an asymptomatic precursor state of multiple myeloma (MM). Recently, MM was redefined to include biomarkers predicting a high risk of progression from SMM, thus necessitating a redefinition of SMM and its risk stratification. We assembled a large cohort of SMM patients meeting the revised IMWG criteria to develop a new risk stratification system. We included 1996 patients, and using stepwise selection and multivariable analysis, we identified three independent factors predicting progression risk at 2 years: serum M-protein >2 g/dL (HR: 2.1), involved to uninvolved free light-chain ratio >20 (HR: 2.7), and marrow plasma cell infiltration >20% (HR: 2.4). This translates into 3 categories with increasing 2-year progression risk: 6% for low risk (38%; no risk factors, HR: 1); 18% for intermediate risk (33%; 1 factor; HR: 3.0), and 44% for high risk (29%; 2–3 factors). Addition of cytogenetic abnormalities (t(4;14), t(14;16), +1q, and/or del13q) allowed separation into 4 groups (low risk with 0, low intermediate risk with 1, intermediate risk with 2, and high risk with ≥3 risk factors) with 6, 23, 46, and 63% risk of progression in 2 years, respectively. The 2/20/20 risk stratification model can be easily implemented to identify high-risk SMM for clinical research and routine practice and will be widely applicable.