Peralta, G. (Goiuri)

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Homomorphic encryption and network coding in IoT architectures: Advantages and future challenges
    (MDPI AG, 2019) Peralta, G. (Goiuri); Crespo-Bofil, P. (Pedro); Bilbao, J. (Josu); Cid-Fuentes, R.G. (Raul G)
    The introduction of the Internet of Things (IoT) is creating manifold new services and opportunities. This new technological trend enables the connection of a massive number of devices among them and with the Internet. The integration of IoT with cloud platforms also provides large storage and computing capabilities, enabling Big Data analytics and bidirectional communication between devices and users. Novel research directions are showing that Network Coding (NC) can increase the robustness and throughput of wireless networks, as well as that Homomorphic Encryption (HE) can be used to perform computations in the cloud while maintaining data privacy. In this paper, we overview the benefits of NC and HE along the entire vertical of cloud-based IoT architectures. By merging both technologies, the architecture may offer manifold advantages: First, it provides end-to-end data privacy, from end-devices to end-users. Second, sensitive data can be stored in public cloud platforms without concern about their privacy. In addition, clouds can perform advanced operations in a confidential manner, without the need to access actual data. Finally, latency can be reduced and the reliability of the system is increased. We show state-of-the-art works that demonstrate the role of both technologies in this type of architectures on a review basis. Furthermore, we describe the main characteristics of NC and HE and also discuss their benefits and limitations, as well as the emerging open challenges.
  • Thumbnail Image
    On the combination of multi-cloud and network coding for cost-efficient storage in industrial applications
    (MDPI AG, 2019) Agüero, R. (Ramón); Peralta, G. (Goiuri); Garrido, P. (Pablo); Crespo-Bofil, P. (Pedro); Bilbao, J. (Josu)
    The adoption of both Cyber–Physical Systems (CPSs) and the Internet-of-Things (IoT) has enabled the evolution towards the so-called Industry 4.0. These technologies, together with cloud computing and artificial intelligence, foster new business opportunities. Besides, several industrial applications need immediate decision making and fog computing is emerging as a promising solution to address such requirement. In order to achieve a cost-efficient system, we propose taking advantage from spot instances, a new service offered by cloud providers, which provide resources at lower prices. The main downside of these instances is that they do not ensure service continuity and they might suffer from interruptions. An architecture that combines fog and multi-cloud deployments along with Network Coding (NC) techniques, guarantees the needed fault-tolerance for the cloud environment, and also reduces the required amount of redundant data to provide reliable services. In this paper we analyze how NC can actually help to reduce the storage cost and improve the resource efficiency for industrial applications, based on a multi-cloud infrastructure. The cost analysis has been carried out using both real AWS EC2 spot instance prices and, to complement them, prices obtained from a model based on a finite Markov chain, derived from real measurements. We have analyzed the overall system cost, depending on different parameters, showing that configurations that seek to minimize the storage yield a higher cost reduction, due to the strong impact of storage cost.