Kepp, O. (Oliver)

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Consensus guidelines for the definition, detection and interpretation of immunogenic cell death
    (Bmj, 2020) Hemmink, A. (Akseli); Gaipl, U.S. (Udo S.); Draganov, D. (Dobrin); Karin, M. (Michael); Mossman, K.L. (Karen L.); Zamarin, D. (Dmitriy); Gool, S.W. (Stefaan W.) van; Kaufman, H.L. (Howard L.); Galluzzi, L. (Lorenzo); Coukos, G. (George); Tang, D. (Daolin); Cesano, A. (Alessandra); Melcher, A. (Alan); Kroemer, G. (Guido); Riganti, C. (Chiara); Han, J. (Jian); Sistigu, A. (Antonella); Tatsuno, K. (Kazuko); Merghoub, T. (Taha); Buqué-Martinez, A. (Aitziber); Rescigno, M. (Maria); Rekdal, O. (Oystein); Loi, S. (Sherene); Fucíková, J. (Jitka); Manic, G. (Gwenola); Strauss, B.E. (Bryan E.); Harrington, K. (K.); Gameiro, S.R. (Sofa R.); Stagg, J. (John); Agostinis, P. (Patrizia); Illidge, T. (Tim); Warren, S. (Sarah); Vandenabeele, P. (Peter); Adjemian, S. (Sandy); Smyth, M.J. (Mark J.); Zitvogel, L. (Laurence); Chan, T.A. (Timothy A.); Yamazaki, T. (Takahiro); Demaria, S. (Sandra); Hodge, J.W. (James W.); Lotze, M.T. (Michael T.); Edelson, R.L. (Richard L.); Vitale, I. (Ilio); Prosper-Cardoso, F. (Felipe); Spisek, R. (Radek); Garg, A. (Abhishek); Golden, E. (Encouse); Sakib-Hossain, D. (Dewan); Formenti, S.C. (Silvia C.); Marincola, F.M. (Francesco M.); Kepp, O. (Oliver); Deutsch, É. (Éric); Gabriele, L. (Lucia); Lasarte, J.J. (Juan José)
    Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
  • Thumbnail Image
    Classification of current anticancer immunotherapies
    (Impact Journals, 2014) Bracci, L. (Laura); Silva-Santos, B. (Bruno); Mach, J.P. (Jean-Pierre); Hoos, A. (Axel); Abastado, J.P. (Jean-Pierre); Ayyoub, M. (Maha); Whiteside, T.L. (Theresa L.); Vile, R.G. (Richard G.); Rizvi, N. (Naiyer); Galon, J. (Jerome); Odunsi, A. (Adekunke); Kirkwood, J.M. (John M.); Galluzzi, L. (Lorenzo); Ghiringhelli, F. (François); Cerundolo, V. (Vincenzo); Gabrilovich, D.I. (Dmitry I.); Melief, C.J. (Cornelis J.); Speiser, D.E. (Daniel E.); Castoldi, F. (Francesca); Kalinski, P. (Pawel); Senovilla, L. (Laura); Tartour, E. (Eric); Colombo, M.P. (Mario P.); Schreiber, H. (Hans); Jäger, D. (Dirk); Mavilio, D. (Domenico); Kroemer, G. (Guido); Apte, R.N. (Ron N.); Porgador A. (Ángel); Blay, J.Y. (Jean-Yves); Fucíková, J. (Jitka); Rabinovich, G.A. (Gabriel A.); Sautès-Fridman, C. (Catherine); Lugli, E. (Enrico); Fridman, W.H. (Wolf H.); Baracco, E.E. (Elisa Elena); Van-Der-Burg, S.H. (Sjoerd H.); Klein, E. (Eva); Srivastava, P.K. (Pramod K.); Kärre, K. (Klas); Gnjatic,S. (Sacha); Agostinis, P. (Patrizia); Aranda, F. (Fernando); Lewis, C.E. (Claire E.); Bloy, N. (Norma); Vacchelli, E. (Erika); Caignard, A. (Anne); Melero, I. (Ignacio); Kiessling, R. (Rolf); Restifo, N.P. (Nicholas P.); Smyth, M.J. (Mark J.); Zitvogel, L. (Laurence); Fearon, D.T. (Douglas T.); Seliger, B. (Barbara); Prendergast, G.C. (George C.); Pienta, K.J. (Kenneth J.); Wolchok, J.D. (Jedd D.); Clayton, A. (Aled); Cavallo, F. (Federica); Hosmalin, A. (Anne); Knuth, A. (Alexander); Lotze, M.T. (Michael T.); Coussens, L. (Lisa); Beckhove, P. (Philipp); Gilboa, E. (Eli); Mittendorf, E.A. (Elizabeth A.); Palucka, A.K. (Anna Karolina); Weber, J.S. (Jeffrey S.); Talmadge, J.E. (James E.); Celis, E. (Esteban); Castelli, C. (Chiara); Spisek, R. (Radek); Zou, W. (Weiping); Eggermont, A.M. (Alexander M.); Garg, A. (Abhishek); Okada, H. (Hideho); Buque, A. (Aitziber); Mattei, F. (Fabrizio); Bravo-San-Pedro, J.M. (José-Manuel); Moretta, L. (Lorenzo); Dhodapkar, M.V. (Madhav V.); Van-Den-Eynde, B.J. (Benoît J.); Peter, M.E. (Marcus E.); Shiku, H. (Hiroshi); Liblau, R. (Roland); Giaccone, G. (Giuseppe); Kepp, O. (Oliver); Wagner, H. (Hermann)
    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.