Aymerich-Soler, M.S. (María Soledad)

Imagen Dialnet0

Search Results

Now showing 1 - 10 of 26
  • Thumbnail Image
    Terapias neuroprotectoras y neurorestauradoras en el tratamiento de la enfermedad de Parkinson
    (Gobierno de Navarra, Departamento de Salud, 2006) Lanciego, J.L. (José Luis); Blanco-Prieto, M.J. (María José); Aymerich-Soler, M.S. (María Soledad); Ansorena-Artieda, E. (Eduardo); Garbayo, E
    Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease. Current therapies are symptomatic and, although these therapies are efficacious during the early stages of the disease, they present important side effects when they are used for a long time. The ideal therapy would be the one that would slow down or stop the progression of the disease. This can be achieved, for instance, with neuroprotective and neurorestorative therapies. Among them, cell therapy and therapy with trophic factors such as glial cell line derived neurotrophic factor (GDNF) are the most challenging and promising ones for the scientific community. Although the use of GDNF as a treatment for Parkinson s disease was proposed several years ago, it is necessary to develop alternative strategies to deliver GDNF appropriately to concrete areas of the brain. Here, the use of microspheres as the most suitable tool for the administration of this neurotrophic factor is discussed.
  • Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors
    (American Society for Biochemistry and Molecular Biology, 2009) Lluis, C. (Carmen); Canela, E.L. (E.L.); Lanciego, J.L. (José Luis); Cortes, A. (Antoni); Navarro, G. (Germán); Marcellino, D. (Daniel); Ferre, S. (Sergi); Aymerich-Soler, M.S. (María Soledad); Franco, R. (Rafael); Woods, A.S. (Amina S.); Casado, V. (Victoria); Mallol, J. (Josefa); Fuxe, K. (K.); Agnati, L. (Luigi)
    The Ca(2+)-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D(2) receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D(2) receptor, within an Arg-rich epitope that is also involved in the binding to G(i/o) proteins and to the adenosine A(2A) receptor, with the formation of A(2A)-D(2) receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A(2A) receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A(2A)-D(2) receptor oligomerization. BRET competition experiments indicated that, in the A(2A)-D(2) receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A(2A) receptor. Furthermore, Ca(2+) was found to induce conformational changes in the CaM-A(2A)-D(2) receptor oligomer and to selectively modulate A(2A) and D(2) receptor-mediated MAPK signaling in the A(2A)-D(2) receptor heteromer. These results may have implications for basal ganglia disorders, since A(2A)-D(2) receptor heteromers are being considered as a target for anti-parkinsonian agents.
  • Thumbnail Image
    Microencapsulación de factores neurotróficos: aplicación al tratamiento de la enfermedad de Parkinson
    (Fundación Mapfre Medicina, 2007) Lanciego, J.L. (José Luis); Blanco-Prieto, M.J. (María José); Aymerich-Soler, M.S. (María Soledad); Garbayo, E
    La enfermedad de Parkinson (EP) es una enfermedad degenerativa, lentamente progresiva caracterizada por temblor de reposo, cara inexpresiva, rigidez, lentitud al iniciar y practicar movimientos voluntarios. Neuropatológicamente se caracteriza por pérdida de células dopaminérgicas en la sustancia nigra lo cual conlleva déficit en el suministro de dopamina a nivel de ganglios basales. Los factores de crecimiento nervioso, o factores neurotróficos, que respaldan la supervivencia, crecimiento y desarrollo de las células cerebrales, son un tipo de terapia prometedora para la enfermedad de Parkinson. Se ha demostrado que el GDNF, factor neurotrófico derivado de la línea celular glial, protege las neuronas de dopamina y promueve su supervivencia en los modelos animales de la enfermedad de Parkinson. Sin embargo, la administración de proteínas en el cerebro no está exenta de dificultades, por ello, el sistema elegido para administrar el GDNF en el cerebro será uno de los puntos clave para el éxito del tratamiento. En este sentido, el uso de micropartículas formuladas a partir de polímeros biodegradables parece ser la estrategia más apropia. En nuestro grupo de investigación hemos desarrollado un protocolo de expresión y purificación de GDNF en células eucariótas de mamífero. El objetivo de este estudio es la microencapsulación de la proteína en partículas biodegradables.
  • Thumbnail Image
    Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: Ipsi- and contralateral projections
    (Wiley Blackwell, 2005) Gonzalo, N. (Nancy); Obeso, J.A. (José A.); Lanciego, J.L. (José Luis); Castle, M. (M.); Aymerich-Soler, M.S. (María Soledad); Sanchez-Escobar, C. (Carlos)
    The present study describes the thalamic innervation coming from the rat parafascicular nucleus (PF) onto striatal and subthalamic efferent neurons projecting either to the globus pallidus (GP) or to the substantia nigra pars reticulata (SNr) by using a protocol for multiple neuroanatomical tracing. Both striatofugal neurons targeting the ipsilateral SNr (direct pathway) as well as striatal efferent neurons projecting to the ipsilateral GP (indirect pathway) were located within the terminal fields of the thalamostriatal afferents. In the subthalamic nucleus (STN), both neurons projecting to ipsilateral GP as well as neurons projecting to ipsilateral SNr also appear to receive thalamic afferents. Although the projections linking the caudal intralaminar nuclei with the ipsilateral striatum and STN are far more prominent, we also noticed that thalamic axons could gain access to the contralateral STN. Furthermore, a small number of STN neurons were seen to project to both the contralateral GP and PF nuclei. These ipsi- and contralateral projections enable the caudal intralaminar nuclei to modulate the activity of both the direct and the indirect pathway.
  • Thumbnail Image
    Dopamine receptor D3 expression is altered in CD4(+) T-cells from parkinson's disease patients and its pharmacologic inhibition attenuates the motor impairment in a mouse model
    (2019) Montoya, A. (Andro); Pacheco, R. (Rodrigo); Abellanas-Sánchez, M.A. (Miguel Ángel); Aymerich-Soler, M.S. (María Soledad); Contreras, F. (Francisco); Franco, R. (Rafael); Choval, O. (Ornella); Villagra, R. (Roque); Henriquez, C. (Claudio); Ugalde, V. (Valentina); Elgueta, D. (Daniela); Prado, C. (Carolina)
    Neuroinflammation constitutes a fundamental process involved in Parkinson's disease (PD). Microglial cells play a central role in the outcome of neuroinflammation and consequent neurodegeneration of dopaminergic neurons in the substantia nigra. Current evidence indicates that CD4(+) T-cells infiltrate the brain in PD, where they play a critical role determining the functional phenotype of microglia, thus regulating the progression of the disease. We previously demonstrated that mice bearing dopamine receptor D3 (DRD3)-deficient CD4(+) T-cells are completely refractory to neuroinflammation and consequent neurodegeneration induced by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study we aimed to determine whether DRD3-signalling is altered in peripheral blood CD4(+) T-cells obtained from PD patients in comparison to healthy controls (HC). Furthermore, we evaluated the therapeutic potential of targeting DRD3 confined to CD4(+) T-cells by inducing the pharmacologic antagonism or the transcriptional inhibition of DRD3-signalling in a mouse model of PD induced by the chronic administration of MPTP and probenecid (MPTPp). In vitro analyses performed in human cells showed that the frequency of peripheral blood Th1 and Th17 cells, two phenotypes favoured by DRD3-signalling, were significantly increased in PD patients. Moreover, native CD4(+) T-cells obtained from PD patients displayed a significant higher Th1 -biased differentiation in comparison with those naive CD4(+) T-cells obtained from HC. Nevertheless, DRD3 expression was selectively reduced in CD4(+) T-cells obtained from PD patients. The results obtained from in vivo experiments performed in mice show that the transference of CD4(+) T-cells treated ex vivo with the DRD3-selective antagonist PG01037 into MPTPp-mice resulted in a significant reduction of motor impairment, although without significant effect in neurodegeneration. Conversely, the transference CD4(+) T-cells transduced ex vivo with retroviral pArtículos codifying for an shRNA for DRD3 into MPTPp-mice had no effects neither in motor impairment nor in neurodegeneration. Notably, the systemic antagonism of DRD3 significantly reduced both motor impairment and neurodegeneration in MPTPp mice. Our findings show a selective alteration of DRD3-signalling in CD4(+) T-cells from PD patients and indicate that the selective DRD3-antagonism in this subset of lymphocytes exerts a therapeutic effect in parkinsonian animals dampening motor impairment.
  • Thumbnail Image
    Expresión y purificación de GDNF para su microencapsulación y aplicación en la enfermedad de Parkinson
    (Fundación Mapfre Medicina, 2006) Lanciego, J.L. (José Luis); Blanco-Prieto, M.J. (María José); Aymerich-Soler, M.S. (María Soledad); Garbayo, E
    La enfermedad de Parkinosn (EP) es un proceso neurodegenerativo del sistema nervioso central que afecta a las neuronas de dopamina de la sustancia negra, núcleo mesoencefálico del control motor. La perdida en el cerebro de este neurotransmisor vital causa los síntomas de la enfermedad. La EP afecta actualmente a 200 de cada 100.000 personas y a 2 de cada 100 entre los mayores de 60 años. En España hay unos 110.000 enfermos. Además, hoy por hoy no se conoce nada que pueda prevenir o curar la enfermedad, ni existe ninguna prueba de laboratorio que permita diagnosticarla. Recentiemente se ha demostrado que el GDNF, factor neurotrófico derivado de las células gliales, es capaz de proteger las neuronas dopaminérgicas e incluso inducir la regeneración del tejido dopaminérgico dañado in vivo. El objetivo del trabajo fue diseñar y desarrolar un método de expresión y purificación de GDNF bioactivo para su posterior microencapsulación y aplicación en la enfermedad de Parkison. El sistema escogido para expresar el GDNF fue el sistema de células eucariotas de mamífero. El vector utilizado para la producción del GDNF en células eucariotas fue el pDEST26 (Tecnología Gateway de Invitrogen). Como sistema de expresión de GDNF se utilizaron las líneas celulares eucariota BHK, 293 y COS 7. Estas células fueron cultivadas en medio D-MEM (Invitrogen) complementado con un 10% de suero fetal bovino (FBS) y Penicilina/Streptomicina (100u/ml) (Invitrogen). La transfección se realizó con Lipofectamine Plus (Invitrogen). Se analizó la expresión de GDNF a nivel de mRNA mediante PCR y a nivel de proteína mediante Western Blot del medio condicionado. Los clones positivos se crecieron en botellas de cultivo de 850 cm2 (Corning) y se realizaron ciclos de recolección del medio. Cada ciclo fue analizado por SDS-PAGE y Western Blot. Para evaluar la actividad de la proteína se ha desarrollado un ensayo de actividad en el que se demuestra la diferenciación morfológica de células PC-12 inducida por GDNF. La presencia de los receptores GFRa1 y RET, necesarios para que el GDNF ejerza su acción, fue determinada por PCR. Las conclusiones obtenidas de este estudio son la obtención de GDNF recombinante a partir de un sistema de expresión en células eucariotas, el desarrollo de un protocolo para su posterior purificación y la obtención de GDNF recombinante biológicamente activo.
  • Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway
    (Elsevier, 2008) Lanciego, J.L. (José Luis); Castle, M. (M.); Aymerich-Soler, M.S. (María Soledad); Barroso-Chinea, P. (P.)
    The present study is focused on the analysis of the vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) used by thalamic neurons giving rise to the thalamostriatal system. Instead of studying the distribution of VGLUT proteins at the level of thalamostriatal terminals, this report is focused on identifying the expression of the VGLUT mRNAs within the parent cell bodies of thalamic neurons innervating the striatum. For this purpose, we have combined dual in situ hybridization to detect both VGLUT1 and VGLUT2 mRNAs together with retrograde tracing with cholera toxin. Our results show that VGLUT2 is the only vesicular glutamate transporter expressed in thalamostriatal-projecting neurons located in the midline and intralaminar nuclei, whereas all neurons from the ventral thalamic nuclei innervating the striatum express both VGLUTs, at least at the mRNA level. Indeed, the mRNAs encoding for VGLUT1 and VGLUT2 displayed a sharp complementary subcellular distribution within neurons from the ventral thalamic nuclei giving rise to thalamostriatal projections. The differential distribution of VGLUT mRNAs lead us to conclude that the thalamostriatal pathway is a dual system, composed by a preponderant projection arising from the midline and intralaminar nuclei using VGLUT2 as the glutamate transporter, together with another important source of striatal afferents arising from neurons in the ventral thalamic relay nuclei containing both kinds of vesicular glutamate transporters.
  • Thumbnail Image
    Long-term neuroprotection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of parkinson's disease
    (Wiley Blackwell, 2011) Lanciego, J.L. (José Luis); Blanco-Prieto, M.J. (María José); Aymerich-Soler, M.S. (María Soledad); Ansorena-Artieda, E. (Eduardo); Garbayo, E
    BACKGROUND: Glial cell-derived neurotrophic factor is a survival factor for dopaminergic neurons and a promising candidate for the treatment of Parkinson's disease. However, the delivery issue of the protein to the brain still remains unsolved. Our aim was to investigate the effect of long-term delivery of encapsulated glial cell-derived neurotrophic factor within microspheres. METHODS: A single dose of microspheres containing 2.5 μg of glial cell-derived neurotrophic factor was implanted intrastriatally in animals 2 weeks after a 6-hydroxydopamine lesion. RESULTS: The amphetamine test showed a complete behavioral recovery after 16 weeks of treatment, which was maintained until the end of the study (week 30). This effect was accompanied by an increase in dopaminergic striatal terminals and neuroprotection of dopaminergic neurons. CONCLUSIONS: The main achievement was the long-term neurorestoration in parkinsonian animals induced by encapsulated glial cell-derived neurotrophic factor, suggesting that microspheres may be considered as a means to deliver glial cell-derived neurotrophic factor for Parkinson's disease treatment. © 2011 Movement Disorder Society.
  • Thumbnail Image
    Microglia and astrocyte activation is region-dependent in the alfa-synuclein mouse model of Parkinson's disease
    (Wiley, 2023) Vilas, A. (Amaia); González-Aseguinolaza, G. (Gloria); Alonso-Roldán, M.M. (Marta María); Vales, A. (África); Abellanas-Sánchez, M.A. (Miguel Ángel); San-Martín-Uriz, P. (Patxi); Aymerich-Soler, M.S. (María Soledad); Ayerra, L. (Leyre); Basurco, L. (Leyre); Hervas-Stubbs, S. (Sandra); Hernaez, M. (Mikel); Mengual, E. (Elisa); Clavero, P. (P.); Arrasate, M. (Montserrat); Tamayo, I. (Ibon); Conde, E. (Enrique); Luquin, E. (Esther); Vinueza-Gavilanes, R. (Rodrigo)
    Inflammation is a common feature in neurodegenerative diseases that contributes to neuronal loss. Previously, we demonstrated that the basal inflammatory tone differed between brain regions and, consequently, the reaction generated to a pro-inflammatory stimulus was different. In this study, we assessed the innate immune reaction in the midbrain and in the striatum using an experimental model of Parkinson's disease. An adeno-associated virus serotype 9 expressing the α-synuclein and mCherry genes or the mCherry gene was administered into the substantia nigra. Myeloid cells (CD11b+ ) and astrocytes (ACSA2+ ) were purified from the midbrain and striatum for bulk RNA sequencing. In the parkinsonian midbrain, CD11b+ cells presented a unique anti-inflammatory transcriptomic profile that differed from degenerative microglia signatures described in experimental models for other neurodegenerative conditions. By contrast, striatal CD11b+ cells showed a pro-inflammatory state and were similar to disease-associated microglia. In the midbrain, a prominent increase of infiltrated monocytes/macrophages was observed and, together with microglia, participated actively in the phagocytosis of dopaminergic neuronal bodies. Although striatal microglia presented a phagocytic transcriptomic profile, morphology and cell density was preserved and no active phagocytosis was detected. Interestingly, astrocytes presented a pro-inflammatory fingerprint in the midbrain and a low number of differentially displayed transcripts in the striatum. During α-synuclein-dependent degeneration, microglia and astrocytes experience context-dependent activation states with a different contribution to the inflammatory reaction. Our results point towards the relevance of selecting appropriate cell targets to design neuroprotective strategies aimed to modulate the innate immune system during the active phase of dopaminergic degeneration.
  • Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus
    (Wiley Blackwel, 2007) Tuñon, M.T. (María Teresa); Erro-Aguirre, M.E (María Elena); Lanciego, J.L. (José Luis); Castle, M. (M.); Aymerich-Soler, M.S. (María Soledad); Barroso-Chinea, P. (P.); Perez-Manso, M. (Mónica)
    Vesicular glutamate transporters (VGLUTs) are responsible for glutamate trafficking and for the subsequent regulated release of this excitatory neurotransmitter at the synapse. Three isoforms of the VGLUT have been identified, now known as VGLUT1, VGLUT2, and VGLUT3. Both VGLUT1 and VGLUT2 have been considered definitive markers of glutamatergic neurons, whereas VGLUT3 is expressed in nonglutamatergic neurons such as cholinergic striatal interneurons. It is widely believed that VGLUT1 and VGLUT2 are expressed in a complementary manner at the cortical and thalamic levels, suggesting that these glutamatergic neurons fulfill different physiological functions. In the present work, we analyzed the pattern of VGLUT1 and VGLUT2 mRNA expression at the thalamic level by using single and dual in situ hybridization. In accordance with current beliefs, we found significant expression of VGLUT2 mRNA in all the thalamic nuclei, while moderate expression of VGLUT1 mRNA was consistently found in both the principal relay and the association thalamic nuclei. Interestingly, individual neurons within these nuclei coexpressed both VGLUT1 and VGLUT2 mRNAs, suggesting that these individual thalamic neurons may have different ways of trafficking glutamate. These results call for a reappraisal of the previously held concept regarding the mutually exclusive distribution of VGLUT transporters in the central nervous system.