Ahlqvist, E. (Emma)
- Publications
- item.page.relationships.isContributorAdvisorOfPublication
- item.page.relationships.isContributorOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
- DNA methylation partially mediates antidiabetic effects of metformin on HbA1c levels in individuals with type 2 diabetes(Elsevier, 2023) Perfilyev, A. (Alexander); Ahlqvist, E. (Emma); Ling, C. (Charlotte); Garcia-Calzon, S. (Sonia); Schrader, S. (Silja); Martinell, M. (Mats)Aims: Despite metformin being used as first-line pharmacological therapy for type 2 diabetes, its underlying mechanisms remain unclear. We aimed to determine whether metformin altered DNA methylation in newlydiagnosed individuals with type 2 diabetes. Methods and Results: We found that metformin therapy is associated with altered methylation of 26 sites in blood from Scandinavian discovery and replication cohorts (FDR < 0.05), using MethylationEPIC arrays. The majority (88%) of these 26 sites were hypermethylated in patients taking metformin for ~ 3 months compared to controls, who had diabetes but had not taken any diabetes medication. Two of these blood-based methylation markers mirrored the epigenetic pattern in muscle and adipose tissue (FDR < 0.05). Four type 2 diabetes-associated SNPs were annotated to genes with differential methylation between metformin cases and controls, e.g., GRB10, RPTOR, SLC22A18AS and TH2LCRR. Methylation correlated with expression in human islets for two of these genes. Three metformin-associated methylation sites (PKNOX2, WDTC1 and MICB) partially mediate effects of metformin on follow-up HbA1c levels. When combining methylation of these three sites into a score, which was used in a causal mediation analysis, methylation was suggested to mediate up to 32% of metformin’s effects on HbA1c. Conclusion: Metformin-associated alterations in DNA methylation partially mediates metformin’s antidiabetic effects on HbA1c in newly-diagnosed individuals with type 2 diabetes.
- Glucose-dependent insulinotropic peptide and risk of cardiovascular events and mortality: a prospective study(2020) Torekov, S.S. (Signe S.); Nilsson, P.M. (Peter M.); Atabaki-Pasdar, N. (Naeimeh); Persson, M. (Margaretha); Prasad, R.B. (Rashmi B.); Ahlqvist, E. (Emma); Hakaste, L. (Liisa); Melander, O. (Olle); Ravassa, S. (Susana); Jujic, A. (Amra); Tuomi, T. (Tiinamaija); Gomez, M.F. (Maria F.); Groop, L. (Leif); Berglund, L.M. (Lisa M.); Holst, J.J. (Jens J.); Magnusson, M. (Martin); Franks, P.W. (Paul W.); Almgren, P. (Peter); Diez, J. (Javier)Aims/hypothesis Evidence that glucose-dependent insulinotropic peptide (GIP) and/or the GIP receptor (GIPR) are involved in cardiovascular biology is emerging. We hypothesised that GIP has untoward effects on cardiovascular biology, in contrast to glucagon-like peptide 1 (GLP-1), and therefore investigated the effects of GIP and GLP-1 concentrations on cardiovascular disease (CVD) and mortality risk. Methods GIP concentrations were successfully measured during OGTTs in two independent populations (Malmö Diet Cancer– Cardiovascular Cohort [MDC-CC] and Prevalence, Prediction and Prevention of Diabetes in Botnia [PPP-Botnia]) in a total of 8044 subjects. GLP-1 (n = 3625) was measured in MDC-CC. The incidence of CVD and mortality was assessed via national/ regional registers or questionnaires. Further, a two-sample Mendelian randomisation (2SMR) analysis between the GIP pathway and outcomes (coronary artery disease [CAD] and myocardial infarction) was carried out using a GIP-associated genetic variant, rs1800437, as instrumental variable. An additional reverse 2SMR was performed with CAD as exposure variable and GIP as outcome variable, with the instrumental variables constructed from 114 known genetic risk variants for CAD. Results In meta-analyses, higher fasting levels of GIP were associated with risk of higher total mortality (HR[95% CI] = 1.22 [1.11, 1.35]; p = 4.5 × 10−5 ) and death from CVD (HR[95% CI] 1.30 [1.11, 1.52]; p = 0.001). In accordance, 2SMR analysis revealed that increasing GIP concentrations were associated with CAD and myocardial infarction, and an additional reverse 2SMR revealed no significant effect of CAD on GIP levels, thus confirming a possible effect solely of GIP on CAD. Conclusions/interpretation In two prospective, community-based studies, elevated levels of GIP were associated with greater risk of all-cause and cardiovascular mortality within 5–9 years of follow-up, whereas GLP-1 levels were not associated with excess risk. Further studies are warranted to determine the cardiovascular effects of GIP per se.
- Epigenetic markers associated with metformin response and intolerance in drug-naïve patients with type 2 diabetes(American Association for the Advancement of Science, 2020) Maziarz, M. (Marlena); Bacos, K. (Karl); Perfilyev, A. (Alexander); Ahlqvist, E. (Emma); Kalamajski, S. (Sebastian); Ling, C. (Charlotte); Ustinova, M. (Monta); Groop, L. (Leif); Vaag, A. (Allan); Elbere, I. (Ilze); Garcia-Calzon, S. (Sonia); Klovins, J. (Janis); Pihlajamäki, J. (Jussi); Franks, P.W. (Paul W.); Martinell, M. (Mats); Volkov, P. (Petr)Metformin is the first-line pharmacotherapy for managing type 2 diabetes (T2D). However, many patients with T2D do not respond to or tolerate metformin well. Currently, there are no phenotypes that successfully predict glycemic response to, or tolerance of, metformin. We explored whether blood-based epigenetic markers could discriminate metformin response and tolerance by analyzing genome-wide DNA methylation in drug-naïve patients with T2D at the time of their diagnosis. DNA methylation of 11 and 4 sites differed between glycemic responders/nonresponders and metformin-tolerant/intolerant patients, respectively, in discovery and replication cohorts. Greater methylation at these sites associated with a higher risk of not responding to or not tolerating metformin with odds ratios between 1.43 and 3.09 per 1-SD methylation increase. Methylation risk scores (MRSs) of the 11 identified sites differed between glycemic responders and nonresponders with areas under the curve (AUCs) of 0.80 to 0.98. MRSs of the 4 sites associated with future metformin intolerance generated AUCs of 0.85 to 0.93. Some of these blood-based methylation markers mirrored the epigenetic pattern in adipose tissue, a key tissue in diabetes pathogenesis, and genes to which these markers were annotated to had biological functions in hepatocytes that altered metformin-related phenotypes. Overall, we could discriminate between glycemic responders/nonresponders and participants tolerant/intolerant to metformin at diagnosis by measuring blood-based epigenetic markers in drug-naïve patients with T2D. This epigenetics-based tool may be further developed to help patients with T2D receive optimal therapy.
- Novel subgroups of type 2 diabetes display different epigenetic patterns that associate with future diabetic complications(American Diabetes Association, 2022) Perfilyev, A. (Alexander); Ahlqvist, E. (Emma); Ling, C. (Charlotte); Groop, L. (Leif); Vaag, A. (Allan); Garcia-Calzon, S. (Sonia); Schrader, S. (Silja); Martinell, M. (Mats)Objective: Type 2 diabetes (T2D) was recently reclassified into severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD), which have different risk of complications. We explored whether DNA methylation differs between these subgroups and whether subgroup-unique methylation risk scores (MRSs) predict diabetic complications. Research design and methods: Genome-wide DNA methylation was analyzed in blood from subjects with newly diagnosed T2D in discovery and replication cohorts. Subgroup-unique MRSs were built, including top subgroup-unique DNA methylation sites. Regression models examined whether MRSs associated with subgroups and future complications. Results: We found epigenetic differences between the T2D subgroups. Subgroup-unique MRSs were significantly different in those patients allocated to each respective subgroup compared with the combined group of all other subgroups. These associations were validated in an independent replication cohort, showing that subgroup-unique MRSs associate with individual subgroups (odds ratios 1.6-6.1 per 1-SD increase, P < 0.01). Subgroup-unique MRSs were also associated with future complications. Higher MOD-MRS was associated with lower risk of cardiovascular (hazard ratio [HR] 0.65, P = 0.001) and renal (HR 0.50, P < 0.001) disease, whereas higher SIRD-MRS and MARD-MRS were associated with an increased risk of these complications (HR 1.4-1.9 per 1-SD increase, P < 0.01). Of 95 methylation sites included in subgroup-unique MRSs, 39 were annotated to genes previously linked to diabetes-related traits, including TXNIP and ELOVL2. Methylation in the blood of 18 subgroup-unique sites mirrors epigenetic patterns in tissues relevant for T2D, muscle and adipose tissue. Conclusions: We identified differential epigenetic patterns between T2D subgroups that associated with future diabetic complications. These data support a reclassification of diabetes and the need for precision medicine in T2D subgroups.