Whiteside, T.L. (Theresa L.)

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Classification of current anticancer immunotherapies
    (Impact Journals, 2014) Bracci, L. (Laura); Silva-Santos, B. (Bruno); Mach, J.P. (Jean-Pierre); Hoos, A. (Axel); Abastado, J.P. (Jean-Pierre); Ayyoub, M. (Maha); Whiteside, T.L. (Theresa L.); Vile, R.G. (Richard G.); Rizvi, N. (Naiyer); Galon, J. (Jerome); Odunsi, A. (Adekunke); Kirkwood, J.M. (John M.); Galluzzi, L. (Lorenzo); Ghiringhelli, F. (François); Cerundolo, V. (Vincenzo); Gabrilovich, D.I. (Dmitry I.); Melief, C.J. (Cornelis J.); Speiser, D.E. (Daniel E.); Castoldi, F. (Francesca); Kalinski, P. (Pawel); Senovilla, L. (Laura); Tartour, E. (Eric); Colombo, M.P. (Mario P.); Schreiber, H. (Hans); Jäger, D. (Dirk); Mavilio, D. (Domenico); Kroemer, G. (Guido); Apte, R.N. (Ron N.); Porgador A. (Ángel); Blay, J.Y. (Jean-Yves); Fucíková, J. (Jitka); Rabinovich, G.A. (Gabriel A.); Sautès-Fridman, C. (Catherine); Lugli, E. (Enrico); Fridman, W.H. (Wolf H.); Baracco, E.E. (Elisa Elena); Van-Der-Burg, S.H. (Sjoerd H.); Klein, E. (Eva); Srivastava, P.K. (Pramod K.); Kärre, K. (Klas); Gnjatic,S. (Sacha); Agostinis, P. (Patrizia); Aranda, F. (Fernando); Lewis, C.E. (Claire E.); Bloy, N. (Norma); Vacchelli, E. (Erika); Caignard, A. (Anne); Melero, I. (Ignacio); Kiessling, R. (Rolf); Restifo, N.P. (Nicholas P.); Smyth, M.J. (Mark J.); Zitvogel, L. (Laurence); Fearon, D.T. (Douglas T.); Seliger, B. (Barbara); Prendergast, G.C. (George C.); Pienta, K.J. (Kenneth J.); Wolchok, J.D. (Jedd D.); Clayton, A. (Aled); Cavallo, F. (Federica); Hosmalin, A. (Anne); Knuth, A. (Alexander); Lotze, M.T. (Michael T.); Coussens, L. (Lisa); Beckhove, P. (Philipp); Gilboa, E. (Eli); Mittendorf, E.A. (Elizabeth A.); Palucka, A.K. (Anna Karolina); Weber, J.S. (Jeffrey S.); Talmadge, J.E. (James E.); Celis, E. (Esteban); Castelli, C. (Chiara); Spisek, R. (Radek); Zou, W. (Weiping); Eggermont, A.M. (Alexander M.); Garg, A. (Abhishek); Okada, H. (Hideho); Buque, A. (Aitziber); Mattei, F. (Fabrizio); Bravo-San-Pedro, J.M. (José-Manuel); Moretta, L. (Lorenzo); Dhodapkar, M.V. (Madhav V.); Van-Den-Eynde, B.J. (Benoît J.); Peter, M.E. (Marcus E.); Shiku, H. (Hiroshi); Liblau, R. (Roland); Giaccone, G. (Giuseppe); Kepp, O. (Oliver); Wagner, H. (Hermann)
    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.
  • Thumbnail Image
    BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis
    (Rockefeller University Press, 2022) Zandhuis, N.D. (Nordin D.); Sadiyah, F. (Firas); Grant, F.M. (Francis M.); Whiteside, T.L. (Theresa L.); Kuo, P. (Paula); Courreges, C.J.F. (Christina J.F.); Kurosaki, T. (Tomohiro); Lozano-Moreda, T. (Teresa); Roychoudhuri, R. (Rahul); Okkenhaug, K. (Klaus); Schuijs, M.J. (Martijn J.); Halim, T.Y.F. (Timotheus Y.F.); Lau, C.M. (Colleen M.); Soilleux, E.J. (Elizabeth J.); Evans, A.C. (Alexander C.); Imianowski, C.J. (Charlotte J.); Sun, J.C. (Joseph C.); Yang, J. (Jie); Benson, J.D. (Jayme D.); Vardaka, P. (Panagiota)
    Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.