Author(s)
Directors
Keywords
Date of the defense
Abstract
Cancer is a leading cause of mortality in the world, with osteosarcoma being one of the most common types among children between 1 and 14 years old. Current treatments including preoperative chemotherapy, surgery and postoperative chemotherapy produce several side effects with limited effectiveness. All these side effects are associated with the lack of targeting capability and the limited specificity that these treatments demonstrate for cancer cells. These limitations made the development of alternative treatment modalities necessary. The novel treatments should offer an efficient and targeted therapy, avoiding the above-mentioned adverse side effects. These targeted therapies involve different particles and external energy sources to target cancer cells: they identify cancer cells in a more precise and effective way, usually causing less damage to healthy tissue. In the last decades, several nanoscale drug delivery and drug targeting systems were developed. However, methodological issues slowed their application, as the in vitro validation of these therapies is limited. Thus, there was need for alternative in vitro methodologies that avoid that provided controlled environments to perform the target therapy validation assays. In order to overcome the problems found in traditional techniques, the use of microtechnology, and more specifically microfluidics, in the biomedical field showed to be of great utility in the development of alternative technologies for biomedical applications. The devices optimized in this thesis, offer new alternatives for the in vitro characterization of targeted therapies, since they allow a significant reduction of reagents and an accurate control over cell environment. Considering all the above-mentioned facts, the objective of this work was to validate microfluidic platforms for the in vitro characterization of cytotoxic drug delivery systems, their diffusion capabilities through membranes to determine the drug absorbance and the validation of new magnetic hyperthermia therapies.
El cáncer es una de las principales causas de mortalidad en el mundo, siendo el osteosarcoma uno de los tipos de cáncer más comunes en los niños de entre 1 y 14 años. Los tratamientos convencionales, incluyendo la quimioterapia preoperativa, cirugía y quimioterapia postoperativa, producen diversos efectos secundarios con limitada efectividad. Todos estos efectos secundarios están asociados a la falta de especificidad que estos tratamientos muestran por las células cancerígenas. Estas limitaciones hacen necesario el desarrollo de nuevas modalidades de tratamientos alternativos. Estos nuevos tratamientos deben ofrecer una terapia eficiente y específica, evitando los efectos secundarios anteriormente mencionados. Estos tratamientos específicos utilizan distintas partículas y fuentes de energía externas para dirigirse a las células cancerígenas: identifican las células tumorales de una manera más precisa y efectiva, generalmente causando menos daño al tejido sano. Durante las últimas décadas, se han desarrollado diversos sistemas de liberación controlada de medicamentos en la nanoescala. Sin embargo, cuestiones metodológicas, tales como la validación in vitro de estas terapias, han ralentizado su aplicación. De hecho, se ha detectado que son necesarias nuevas técnicas in vitro que proporcionen un ambiente controlado durante la validación de las nuevas terapias dirigidas. Para superar los problemas encontrados en las técnicas tradicionales, el uso de la microtecnología, y más específicamente de la microfluídica, en el ámbito biomédico ha demostrado ser de utilidad en el desarrollo de técnicas alternativas para aplicaciones biomédicas. Los dispositivos optimizados en esta tesis ofrecen nuevas alternativas para la caracterización in vitro de terapias dirigidas, ya que permiten reducir significativamente los reactivos y proporcionar un control preciso en el ambiente celular. Considerando todos los hechos mencionados anteriormente, el objetivo de este trabajo es la validación de plataformas microfluídicas para la caracterización in vitro de nuevos sistemas de liberación de medicamentos citotóxicos, su capacidad de difusión a través de membranas para determinar la absorción del medicamento y la validación de nuevas terapias de hipertermia magnética.