Glutamatergic and cholinergic pedunculopontine neurons innervate the thalamic parafascicular nucleus in rats: changes following experimental parkinsonism
Palabras clave : 
Basal ganglia
PPTg
vGlut
ChAT
Glutamate
Parkinson’s disease
Fecha de publicación : 
2011
Editorial : 
Springer Verlag
ISSN : 
1863-2661
Cita: 
Barroso-Chinea P, Rico AJ, Conte-Perales L, Gomez-Bautista V, Luquin N, Sierra S, et al. Glutamatergic and cholinergic pedunculopontine neurons innervate the thalamic parafascicular nucleus in rats: changes following experimental parkinsonism. Brain Struct Funct 2011 Nov;216(4):319-330.
Resumen
The tegmental pedunculopontine nucleus (PPN) is a basal ganglia-related structure that has recently gained renewed interest as a potential surgical target for the treatment of several aspects of Parkinson's disease. However, the underlying anatomical substrates sustaining the choice of the PPN nucleus as a surgical candidate remain poorly understood. Here, we characterized the chemical phenotypes of different subtypes of PPN efferent neurons innervating the rat parafascicular (PF) nucleus. Emphasis was placed on elucidating the impact of unilateral nigrostriatal denervation on the expression patterns of the mRNA coding the vesicular glutamate transporter type 2 (vGlut2 mRNA). We found a bilateral projection from the PPN nucleus to the PF nucleus arising from cholinergic and glutamatergic efferent neurons, with a small fraction of projection neurons co-expressing both cholinergic and glutamatergic markers. Furthermore, the unilateral nigrostriatal depletion induced a bilateral twofold increase in the expression levels of vGlut2 mRNA within the PPN nucleus. Our results support the view that heterogeneous chemical profiles account for PPN efferent neurons innervating thalamic targets. Moreover, a bilateral enhancement of glutamatergic transmission arising from the PPN nucleus occurs following unilateral dopaminergic denervation, therefore sustaining the well-known hyperactivity of the PF nucleus in parkinsonian-like conditions. In conclusion, our data suggest that the ascending projections from the PPN that reach basal ganglia-related targets could play an important role in the pathophysiology of Parkinson's disease.

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Estadísticas e impacto
0 citas en
0 citas en

Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.