Full metadata record
DC FieldValueLanguage
dc.creatorZabaleta-Lasarte, N. (Nerea)-
dc.creatorBarberia, M. (Miren)-
dc.creatorMartin-Higueras, C. (Cristina)-
dc.creatorZapata-Linares, N.M. (Natalia María)-
dc.creatorBetancor, I. (Isabel)-
dc.creatorRodriguez, S. (Saray)-
dc.creatorMartínez-Turrillas, R. (Rebeca)-
dc.creatorTorella, L. (Laura)-
dc.creatorVales, A. (África)-
dc.creatorOlagüe, M. (María)-
dc.creatorVilas, A. (Amaia)-
dc.creatorCastro-Labrador, L. (Laura)-
dc.creatorLara-Astiaso, D. (David)-
dc.creatorProsper-Cardoso, F. (Felipe)-
dc.creatorSalido, E. (Eduardo)-
dc.creatorGonzález-Aseguinolaza, G. (Gloria)-
dc.creatorRodriguez-Madoz, J.R. (Juan Roberto)-
dc.date.accessioned2019-02-01T08:45:26Z-
dc.date.available2019-02-01T08:45:26Z-
dc.date.issued2018-
dc.identifier.citationZabaleta-Lasarte, N. (Nerea); Barberia, M.; Martin-Higueras, C.; et al. "CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I". Nature communications. 9, 2018, 5454es
dc.identifier.issn2041-1723-
dc.identifier.urihttps://hdl.handle.net/10171/56384-
dc.description.abstractCRISPR/Cas9 technology offers novel approaches for the development of new therapies for many unmet clinical needs, including a significant number of inherited monogenic diseases. However, in vivo correction of disease-causing genes is still inefficient, especially for those diseases without selective advantage for corrected cells. We reasoned that substrate reduction therapies (SRT) targeting non-essential enzymes could provide an attractive alternative. Here we evaluate the therapeutic efficacy of an in vivo CRISPR/Cas9-mediated SRT to treat primary hyperoxaluria type I (PH1), a rare inborn dysfunction in glyoxylate metabolism that results in excessive hepatic oxalate production causing end-stage renal disease. A single systemic administration of an AAV8-CRISPR/Cas9 vector targeting glycolate oxidase, prevents oxalate overproduction and kidney damage, with no signs of toxicity in Agxt1(-/-) mice. Our results reveal that CRISPR/Cas9-mediated SRT represents a promising therapeutic option for PH1 that can be potentially applied to other metabolic diseases caused by the accumulation of toxic metabolites.-
dc.description.sponsorshipWe thank the Bioinformatics Unit at CIMA and the Genomics Facility at CIMA LABDiagnostics. This work was funded by grants from ERA-NET E-Rare 3 research programJTC ERAdicatPH, Instituto de Salud Carlos III (ISCIII) AC15/00036 and PI16/00150,TERCEL (ISCIII) RD16/0011/0005, MINECO SAF2015-69796, Gobierno de Navarra 91/2016, Ayuda a la investigación D. Juan Manuel Mingo and Oxalosis & HyperoxaluriaFoundation. NeZ was supported by fellowships form Asociación Amigos de la Uni-versidad de Navarra (ADA) and Fundación para la Investigación Médica Aplicada(FIMA).-
dc.language.isoen-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectSubstrate reduction therapy-
dc.subjectMouse model-
dc.subjectVivo-
dc.subjectDisease-
dc.subjectSystem-
dc.subjectTarget-
dc.subjectReplacement-
dc.subjectDeficiency-
dc.subjectExpression-
dc.subjectMutations-
dc.titleCRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I-
dc.typeinfo:eu-repo/semantics/article-
dc.description.noteThis is an open access article distributed under the Creative Commons: Atribution License (cc BY)-
dc.identifier.doi10.1038/s41467-018-07827-1-

Files in This Item:
Thumbnail
File
pdf.pdf
Description
Size
1.03 MB
Format
Adobe PDF


Statistics and impact
0 citas en
0 citas en

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.