Full metadata record
DC FieldValueLanguage
dc.creatorMartínez-Negro, M. (María)-
dc.creatorSánchez-Arribas, N. (Natalia)-
dc.creatorGuerrero-Martínez, A. (Andrés)-
dc.creatorMoyá, M.L. (María Luisa)-
dc.creatorTros-de-Ilarduya, C. (Conchita)-
dc.creatorMendicuti, F. (Francisco)-
dc.creatorAicart, E. (Emilio)-
dc.creatorJunquera, E. (Elena)-
dc.date.accessioned2021-09-09T11:47:56Z-
dc.date.available2021-09-09T11:47:56Z-
dc.date.issued2019-
dc.identifier.citationMartínez-Negro, M. (María); Sánchez-Arribas, N. (Natalia); Guerrero-Martínez, A. (Andrés); et al. "A Non-Viral Plasmid DNA Delivery System Consisting on a Lysine-Derived Cationic Lipid Mixed with a Fusogenic Lipid". Pharmaceutics. 11 (632), 2019, 1 - 16es_ES
dc.identifier.issn1999-4923-
dc.identifier.otherPMID: 31783620-
dc.identifier.urihttps://hdl.handle.net/10171/61973-
dc.description.abstractThe insertion of biocompatible amino acid moieties in non-viral gene nanocarriers is an attractive approach that has been recently gaining interest. In this work, a cationic lipid, consisting of a lysine-derived moiety linked to a C12 chain (LYCl) was combined with a common fusogenic helper lipid (DOPE) and evaluated as a potential vehicle to transfect two plasmid DNAs (encoding green fluorescent protein GFP and luciferase) into COS-7 cells. A multidisciplinary approach has been followed: (i) biophysical characterization based on zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and cryo-transmission electronic microscopy (cryo-TEM); (ii) biological studies by fluorescence assisted cell sorting (FACS), luminometry, and cytotoxicity experiments; and (iii) a computational study of the formation of lipid bilayers and their subsequent stabilization with DNA. The results indicate that LYCl/DOPE nanocarriers are capable of compacting the pDNAs and protecting them efficiently against DNase I degradation, by forming Lα lyotropic liquid crystal phases, with an average size of ~200 nm and low polydispersity that facilitate the cellular uptake process. The computational results confirmed that the LYCl/DOPE lipid bilayers are stable and also capable of stabilizing DNA fragments via lipoplex formation, with dimensions consistent with experimental values. The optimum formulations (found at 20% of LYCl content) were able to complete the transfection process efficiently and with high cell viabilities, even improving the outcomes of the positive control Lipo2000*.es_ES
dc.description.sponsorshipThis work was supported by grants from the MINECO of Spain (contract numbers CTQ2015-65972-R, CTQ2015-64425-C2-1-R, CTQ2015-64425-C2-2-R, CTQ2016-80600-P and RTI2018-095844-B-I00), the University Complutense of Madrid (Spain) (project number UCMA05-33-010), and the University of Alcalá (project number CCGP2017-EXP/027).es_ES
dc.language.isoenges_ES
dc.publisherMDPI AGes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectMaterias Investigacion::Farmacia::Química farmacéuticaes_ES
dc.subjectCompactiones_ES
dc.subjectGene deliveryes_ES
dc.subjectLipoplexes_ES
dc.subjectLysine-derived cationic lipides_ES
dc.subjectMolecular dynamicses_ES
dc.subjectMultilamellar aggregateses_ES
dc.subjectPlasmid DNAes_ES
dc.subjectProtectiones_ES
dc.subjectTransfectiones_ES
dc.titleA Non-Viral Plasmid DNA Delivery System Consisting on a Lysine-Derived Cationic Lipid Mixed with a Fusogenic Lipides_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversion10.3390/pharmaceutics11120632es_ES
dc.description.noteThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.identifier.doi10.3390/pharmaceutics11120632-
dadun.citation.endingPage16es_ES
dadun.citation.number632es_ES
dadun.citation.publicationNamePharmaceuticses_ES
dadun.citation.startingPage1es_ES
dadun.citation.volume11es_ES

Files in This Item:
Thumbnail
File
pharmaceutics-11-00632.pdf
Description
Size
3.2 MB
Format
Adobe PDF


Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.