Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen
Keywords: 
Materias Investigacion::Ciencias de la Salud::Inmunología
Conventional dendritic cells
cDC1
Cancer immunotherapy
Vaccination
Cell-associated antigen
Cross-presenting dendritic cells
Immunogenic cell death
Issue Date: 
2019
Publisher: 
BMJ
ISSN: 
2051-1426
Note: 
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Citation: 
Wculek, S.K. (Stefanie K.); Amores-Iniesta, J. (Joaquín); Conde-Garrosa, R. (Ruth); et al. "Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen". Journal for ImmunoTherapy of Cancer. 7 (1), 2019, 1 - 16
Abstract
Background: The manipulation of dendritic cells (DCs) for cancer vaccination has not reached its full potential, despite the revolution in cancer immunotherapy. DCs are fundamental for CD8+ T cell activation, which relies on cross-presentation of exogenous antigen on MHC-I and can be fostered by immunogenic cancer cell death. Translational and clinical research has focused on in vitro-generated monocyte-derived DCs, while the vaccination efficacy of natural conventional type 1 DCs (cDC1s), which are associated with improved anti-tumor immunity and specialize on antigen cross-presentation, remains unknown. Methods: We isolated primary spleen mouse cDC1s and established a protocol for fast ex vivo activation and antigen-loading with lysates of tumor cells that underwent immunogenic cell death by UV irradiation. Natural tumor antigen-loaded cDC1s were transferred and their potential for induction of endogenous CD8+ and CD4+ T cell responses in vivo, cancer prevention and therapy were assessed in three grafted cancer models. Further, we tested the efficacy of natural cDC1 vaccination in combination and comparison with anti-PD-1 treatment in two "wildtype" tumor models not expressing exogenous antigens. Results: Herein, we reveal that primary mouse cDC1s ex vivo loaded with dead tumor cell-derived antigen are activated and induce strong CD8+ T cell responses from the endogenous repertoire upon adoptive transfer in vivo through tumor antigen cross-presentation. Notably, cDC1-based vaccines enhance tumor infiltration by cancer-reactive CD8+ and CD4+ T cells and halt progression of engrafted cancer models, including tumors that are refractory to anti-PD-1 treatment. Moreover, combined tumor antigen-loaded primary cDC1 and anti-PD-1 therapy had strong synergistic effects in a PD-1 checkpoint inhibition susceptible cancer model. Conclusions: This preclinical proof-of-principle study is first to support the therapeutic efficacy of cancer immunotherapy with syngeneic dead tumor cell antigen-loaded mouse cDC1s, the equivalents of the human dendritic cell subset that correlates with beneficial prognosis of cancer patients. Our data pave the way for translation of cDC1-based cancer treatments into the clinic when isolation of natural human cDC1s becomes feasible.

Files in This Item:
Thumbnail
File
100.full.pdf
Description
Size
1.71 MB
Format
Adobe PDF


Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.