Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Valcárcel-García, L.V. (Luis Vitores) | - |
dc.creator | San-Jose-Eneriz, E. (Edurne) | - |
dc.creator | Cendoya-Garmendia, X. (Xabier) | - |
dc.creator | Rubio-Díaz-Cordovés, Á. (Ángel) | - |
dc.creator | Aguirre-Ena, X. (Xabier) | - |
dc.creator | Prosper, F. (Felipe) | - |
dc.creator | Planes-Pedreño, F.J. (Francisco Javier) | - |
dc.date.accessioned | 2022-12-07T10:06:34Z | - |
dc.date.available | 2022-12-07T10:06:34Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Valcárcel-García, L. (Luis Vitores); San José-Enériz, E. (Edurne); Cendoya-Garmendia, X. (Xabier); et al. "BOSO: A novel feature selection algorithm for linear regression with high-dimensional data". Plos Computational Biology. 18 (5), 2022, e1010180 | es |
dc.identifier.issn | 1553-7358 | - |
dc.identifier.uri | https://hdl.handle.net/10171/64804 | - |
dc.description.abstract | With the frenetic growth of high-dimensional datasets in different biomedical domains, there is an urgent need to develop predictive methods able to deal with this complexity. Feature selection is a relevant strategy in machine learning to address this challenge. We introduce a novel feature selection algorithm for linear regression called BOSO (Bilevel Optimization Selector Operator). We conducted a benchmark of BOSO with key algorithms in the literature, finding a superior accuracy for feature selection in high-dimensional datasets. Proof-of-concept of BOSO for predicting drug sensitivity in cancer is presented. A detailed analysis is carried out for methotrexate, a well-studied drug targeting cancer metabolism. | - |
dc.language.iso | en | - |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.subject | Machine Learning | - |
dc.subject | Linear Models | - |
dc.title | BOSO: A novel feature selection algorithm for linear regression with high-dimensional data | - |
dc.type | info:eu-repo/semantics/article | - |
dc.relation.publisherversion | https://pubmed.ncbi.nlm.nih.gov/35639775/ | - |
dc.identifier.doi | 10.1371/journal.pcbi.1010180 | - |
dadun.citation.number | 5 | - |
dadun.citation.publicationName | Plos Computational Biology | - |
dadun.citation.startingPage | e1010180 | - |
dadun.citation.volume | 18 | - |
Files in This Item:
Statistics and impact
Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.