Full metadata record
DC FieldValueLanguage
dc.creatorValcárcel-García, L.V. (Luis Vitores)-
dc.creatorSan-Jose-Eneriz, E. (Edurne)-
dc.creatorCendoya-Garmendia, X. (Xabier)-
dc.creatorRubio-Díaz-Cordovés, Á. (Ángel)-
dc.creatorAguirre-Ena, X. (Xabier)-
dc.creatorProsper, F. (Felipe)-
dc.creatorPlanes-Pedreño, F.J. (Francisco Javier)-
dc.date.accessioned2022-12-07T10:06:34Z-
dc.date.available2022-12-07T10:06:34Z-
dc.date.issued2022-
dc.identifier.citationValcárcel-García, L. (Luis Vitores); San José-Enériz, E. (Edurne); Cendoya-Garmendia, X. (Xabier); et al. "BOSO: A novel feature selection algorithm for linear regression with high-dimensional data". Plos Computational Biology. 18 (5), 2022, e1010180es
dc.identifier.issn1553-7358-
dc.identifier.urihttps://hdl.handle.net/10171/64804-
dc.description.abstractWith the frenetic growth of high-dimensional datasets in different biomedical domains, there is an urgent need to develop predictive methods able to deal with this complexity. Feature selection is a relevant strategy in machine learning to address this challenge. We introduce a novel feature selection algorithm for linear regression called BOSO (Bilevel Optimization Selector Operator). We conducted a benchmark of BOSO with key algorithms in the literature, finding a superior accuracy for feature selection in high-dimensional datasets. Proof-of-concept of BOSO for predicting drug sensitivity in cancer is presented. A detailed analysis is carried out for methotrexate, a well-studied drug targeting cancer metabolism.-
dc.language.isoen-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectMachine Learning-
dc.subjectLinear Models-
dc.titleBOSO: A novel feature selection algorithm for linear regression with high-dimensional data-
dc.typeinfo:eu-repo/semantics/article-
dc.relation.publisherversionhttps://pubmed.ncbi.nlm.nih.gov/35639775/-
dc.identifier.doi10.1371/journal.pcbi.1010180-
dadun.citation.number5-
dadun.citation.publicationNamePlos Computational Biology-
dadun.citation.startingPagee1010180-
dadun.citation.volume18-

Files in This Item:
Thumbnail
File
pdf.pdf
Description
Size
2.75 MB
Format
Adobe PDF


Statistics and impact

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.