Full metadata record
DC FieldValueLanguage
dc.creatorNovacek, V. (Vit)-
dc.creatorMcGauran, G. (Gavin)-
dc.creatorMatallanas, D. (David)-
dc.creatorVallejo-Blanco, A. (Adrián)-
dc.creatorConca, P. (Piero)-
dc.creatorMuñoz, E. (Emir)-
dc.creatorCostabello, L. (Luca)-
dc.creatorKanakaraj, K. (Kamalesh)-
dc.creatorNawaz, Z. (Zeeshan)-
dc.creatorWalsh, B. (Brian)-
dc.creatorMohamed, S.K. (Sameh K.)-
dc.creatorVandenbussche, P.Y. (Pierre Yves)-
dc.creatorRyan, C.J. (Colm J.)-
dc.creatorKolch, W. (Walter)-
dc.creatorFey, D. (Dirk)-
dc.date.accessioned2023-02-06T13:45:42Z-
dc.date.available2023-02-06T13:45:42Z-
dc.date.issued2020-
dc.identifier.citationNovacek, V. (Vit); McGauran, G. (Gavin); Matallanas, D. (David); et al. "Accurate prediction of kinase-substrate networks using knowledge graphs". Computational Biology. 2020, 16(12): e1007578es_ES
dc.identifier.issn1553-7358-
dc.identifier.urihttps://hdl.handle.net/10171/65279-
dc.description.abstractPhosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular processes. However, discovering specific kinasesubstrate relationships is time-consuming and often rather serendipitous. Computational predictions alleviate these challenges, but the current approaches suffer from limitations like restricted kinome coverage and inaccuracy. They also typically utilise only local features without reflecting broader interaction context. To address these limitations, we have developed an alternative predictive model. It uses statistical relational learning on top of phosphorylation networks interpreted as knowledge graphs, a simple yet robust model for representing networked knowledge. Compared to a representative selection of six existing systems, our model has the highest kinome coverage and produces biologically valid highconfidence predictions not possible with the other tools. Specifically, we have experimentally validated predictions of previously unknown phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic experiments, and facilitates the discovery of new phosphorylation reactions. Our model can be accessed publicly via an easy-to-use web interface (LinkPhinder).es_ES
dc.description.sponsorshipThis work was supported by the CLARIFY project funded by European Commission under the grant number 875160, the TOMOE project funded by Fujitsu Laboratories Ltd., Japan and Insight Centre for Data Analytics at National University of Ireland Galway (supported by the Science Foundation Ireland grant 12/RC/2289) and Science Foundation Ireland grants 14/IA/2395 and 15/CDA/3495 to Walter Kolch and David Matallanas, respectively. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.es_ES
dc.language.isoenges_ES
dc.publisherPLOSes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectKinase-substrate networkses_ES
dc.subjectLATS1es_ES
dc.subjectAKT1es_ES
dc.subjectPKAes_ES
dc.subjectMST2es_ES
dc.titleAccurate prediction of kinase-substrate networks using knowledge graphses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.noteThis is an open access article distributed under the terms of the Creative Commons Attribution Licensees_ES
dc.identifier.doi10.1371/journal.pcbi.1007578-
dadun.citation.number12es_ES
dadun.citation.publicationNameComputational Biologyes_ES
dadun.citation.startingPagee1007578es_ES
dadun.citation.volume16es_ES
dc.identifier.pmid33270624-

Files in This Item:
Thumbnail
File
journal.pcbi.1007578.pdf
Description
Size
3.02 MB
Format
Adobe PDF


Statistics and impact
0 citas en
0 citas en

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.