Broadly tunable linewidth-invariant Raman Stokes comb for selective resonance photoionization
Issue Date: 
2020
Note: 
Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Citation: 
Talán-Echarri, D. (Daniel); Chrysalidis, K. (Katerina); Fedosseev, V.N. (Valentin N.); et al. "Broadly tunable linewidth-invariant Raman Stokes comb for selective resonance photoionization". Optics Express. 28 (6), 2020, 8589 - 8600
Abstract
We demonstrate a continuously tunable, multi-Stokes Raman laser operating in the visible range (420 - 600 nm). Full spectral coverage was achieved by efficiently cascading the Raman shifted output of a tunable, frequency-doubled Ti:Sapphire laser. Using an optimized hemi-spherical external Raman cavity composed only of a diamond crystal and a single reflecting mirror, producing high power output at high conversion efficiency (>60 % from pump to Stokes) for a broad range of wavelengths across the visible. Enhancement of the cascading was achieved by controlling the polarization state of the pump and Stokes orders. The Stokes outputs exhibited a linewidth of 11 ± 1 GHz for each order, resembling the pump laser linewidth, enabling its use for the intended spectroscopic applications. Furthermore, the Raman laser performance was demonstrated by applying it for the resonance excitation of atomic transitions in calcium.

Files in This Item:
Thumbnail
File
oe-28-6-8589.pdf
Description
Size
1.33 MB
Format
Adobe PDF


Statistics and impact
0 citas en
0 citas en

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.