Encapsulation of MSCs and GDNF in an Injectable Nanoreinforced Supramolecular Hydrogel for Brain Tissue Engineering
Keywords: 
Hyaluronic-acid
Nanoparticles
Delivery
Stability
Scaffolds
Efficacy
Collagen
Improve
Package
Issue Date: 
2022
ISSN: 
1525-7797
Citation: 
Torres-Ortega, P. (Pablo Vicente); del Campo-Montoya, R. (Rubén); Plano-Amatriain, D. (Daniel); et al. "Encapsulation of MSCs and GDNF in an Injectable Nanoreinforced Supramolecular Hydrogel for Brain Tissue Engineering". Biomacromolecules. 23 (11), 2022, 4629 - 4644
Abstract
The co-administration of glial cell line-derived neurotrophic factor (GDNF) and mesenchymal stem cells (MSCs) in hydrogels (HGs) has emerged as a powerful strategy to enhance the efficient integration of transplanted cells in Parkinson's disease (PD). This strategy could be improved by controlling the cellular microenvironment and biomolecule release and better mimicking the complex properties of the brain tissue. Here, we develop and characterize a drug delivery system for brain repair where MSCs and GDNF are included in a nanoparticle-modified supramolecular guest-host HA HG. In this system, the nanoparticles act as both carriers for the GDNF and active physical crosslinkers of the HG. The multifunctional HG is mechanically compatible with brain tissue and easily injectable. It also protects GDNF from degradation and achieves its controlled release over time. The cytocompatibility studies show that the developed biomaterial provides a friendly environment for MSCs and presents good compatibility with PC12 cells. Finally, using RNA-sequencing (RNA-seq), we investigated how the three-dimensional (3D) environment, provided by the nanostructured HG, impacted the encapsulated cells. The transcriptome analysis supports the beneficial effect of including MSCs in the nanoreinforced HG. An enhancement in the anti-inflammatory effect of MSCs was observed, as well as a differentiation of the MSCs toward a neuron-like cell type. In summary, the suitable strength, excellent self healing properties, good biocompatibility, and ability to boost MSC regenerative potential make this nanoreinforced HG a good candidate for drug and cell administration to the brain.

Files in This Item:
Thumbnail
File
pdf.pdf
Description
Size
11.37 MB
Format
Adobe PDF


Statistics and impact

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.