On the asymptotic optimality of a low-complexity coding strategy for WSS, MA, and AR vector sources
Keywords: 
Source coding
Low-complexit
Wide sense stationary (WSS) vector source
Moving average (MA) vector source
Autoregressive (AR) vector source
Issue Date: 
2020
Publisher: 
MDPI AG
Project: 
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104958RB-C44/ES/AVANCES EN CODIFICACION Y PROCESADO DE SEÑAL PARA LA SOCIEDAD DIGITAL
ISSN: 
1099-4300
Note: 
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Citation: 
Gutiérrez-Gutiérrez, J. (Jesús); Zárraga-Rodríguez, M. (Marta de); Insausti-Sarasola, X. (Xabier). "On the asymptotic optimality of a low-complexity coding strategy for WSS, MA, and AR vector sources". Entropy. 22 (12), 2020, 1378
Abstract
In this paper, we study the asymptotic optimality of a low-complexity coding strategy for Gaussian vector sources. Specifically, we study the convergence speed of the rate of such a coding strategy when it is used to encode the most relevant vector sources, namely wide sense stationary (WSS), moving average (MA), and autoregressive (AR) vector sources. We also study how the coding strategy considered performs when it is used to encode perturbed versions of those relevant sources. More precisely, we give a sufficient condition for such perturbed versions so that the convergence speed of the rate remains unaltered.

Files in This Item:
Thumbnail
File
entropy-22-01378.pdf
Description
Size
433 kB
Format
Adobe PDF


Statistics and impact
0 citas en
0 citas en

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.