Transcriptomic comparison of bone marrow CD34+ cells and peripheral blood neutrophils from ET patients with JAK2 or CALR mutations
Keywords: 
Myeloproliferative neoplasms
CALR
JAK2
Peripheral blood
Bone marrow
Essential thrombocythemia
Issue Date: 
2023
ISSN: 
2730-6844
Note: 
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Citation: 
Guijarro-Hernández, A. (Ana); Vizmanos-Pérez, J. (José Luis). "Transcriptomic comparison of bone marrow CD34+ cells and peripheral blood neutrophils from ET patients with JAK2 or CALR mutations". BMC genomic data. 24 (1), 2023, 40
Abstract
BackgroundEssential thrombocythemia (ET) is one of the most common types of Ph-negative myeloproliferative neoplasms, an infrequent group of blood cancers that arise from a CD34 + hematopoietic stem cell (HSC) in the bone marrow (BM) primarily due to driver mutations in JAK2, CALR or MPL. These aberrations result in an overproduction of mature myeloid cells in peripheral blood (PB). To date, no targeted therapies have been approved for ET patients, so the study of the molecular mechanisms behind the disease and the identification of new therapeutic targets may be of interest. For this reason, in this study, we have compared the transcriptomic profile of undifferentiated CD34 + cells and mature myeloid cells from ET patients (CALR and JAK2-mutated) and healthy donors deposited in publicly available databases. The study of the similarities and differences between these samples might help to better understand the molecular mechanisms behind the disease according to the degree of maturation of the malignant clone and the type of mutation and ultimately help identify new therapeutic targets for these patients.ResultsThe results show that most of the altered hallmarks in neutrophils were also found in CD34 + cells. However, only a few genes showed a similar aberrant expression pattern in both types of cells. We have identified a signature of six genes common to patients with CALR and JAK2 mutations (BPI, CRISP3, LTF, MMP8, and PTGS1 upregulated, and PBXIP1 downregulated), a different signature of seven genes for patients with CALR mutations (BMP6, CEACAM8, ITK, LCN2, and PRG2 upregulated, and MAN1A1 and MME downregulated) and a signature of 13 genes for patients with JAK2 mutations (ARG1, CAST, CD177, CLEC5A, DAPP1, EPS15, IL18RAP, OLFM4, OLR1, RIOK3, SELP, and THBS1 upregulated, and IGHM downregulated).ConclusionsOur results highlight transcriptomic similarities and differences in ET patients according to the degree of maturation of the malignant clone and the type of mutation. The genes and processes altered in both CD34 + cells and mature neutrophils may reveal altered sustained processes that could be studied as future therapeutic targets for ET patients.

Files in This Item:
Thumbnail
File
pdf.pdf
Description
Size
3.96 MB
Format
Adobe PDF


Statistics and impact

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.