Serrano, R. (Rosario)
- Publications
- item.page.relationships.isContributorAdvisorOfPublication
- item.page.relationships.isContributorOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
- Primeros años de la Escuela de Enfermeras(Servicio de Publicaciones de la Universidad de Navarra, 2001) Arribas, G. (Guadalupe); Serrano, R. (Rosario)
- Matrix metalloproteinase-10 effectively reduces infarct size in experimental stroke by enhancing fibrinolysis via a thrombin-activatable fibrinolysis inhibitor-mediated mechanism(Lippincott, Williams & Wilkins, 2011) Parks, W.C. (William C.); Paramo, J.A. (José Antonio); Purroy, A. (A.); Orbe, J. (Josune); Rodriguez, J.A. (José Antonio); Barrenetxe, J. (Jaione); Serrano, R. (Rosario); Martinez-de-Lizarrondo, S. (Sara); Orset, C. (C.); Angles-Cano, E. (Eduardo); Vivien, D. (D.); Birkland, T.P. (T.P.)BACKGROUND: The fibrinolytic and matrix metalloproteinase (MMP) systems cooperate in thrombus dissolution and extracellular matrix proteolysis. The plasminogen/plasmin system activates MMPs, and some MMPs have been involved in the dissolution of fibrin by targeting fibrin(ogen) directly or by collaborating with plasmin. MMP-10 has been implicated in inflammatory/thrombotic processes and vascular integrity, but whether MMP-10 could have a profibrinolytic effect and represent a promising thrombolytic agent is unknown. METHODS AND RESULTS: The effect of MMP-10 on fibrinolysis was studied in vitro and in vivo, in MMP-10-null mice (Mmp10(-/-)), with the use of 2 different murine models of arterial thrombosis: laser-induced carotid injury and ischemic stroke. In vitro, we showed that MMP-10 was capable of enhancing tissue plasminogen activator-induced fibrinolysis via a thrombin-activatable fibrinolysis inhibitor inactivation-mediated mechanism. In vivo, delayed fibrinolysis observed after photochemical carotid injury in Mmp10(-/-) mice was reversed by active recombinant human MMP-10. In a thrombin-induced stroke model, the reperfusion and the infarct size in sham or tissue plasminogen activator-treated animals were severely impaired in Mmp10(-/-) mice. In this model, administration of active MMP-10 to wild-type animals significantly reduced blood reperfusion time and infarct size to the same extent as tissue plasminogen activator and was associated with shorter bleeding time and no intracranial hemorrhage. This effect was not observed in thrombin-activatable fibrinolysis inhibitor-deficient mice, suggesting thrombin-activatable fibrinolysis inhibitor inactivation as one of the mechanisms involved in the MMP-10 profibrinolytic effect. CONCLUSIONS: A novel profibrinolytic role for MMP-10 in experimental ischemic stroke is described, opening new pathways for innovative fibrinolytic strategies in arterial thrombosis.
- Increased thrombin generation after acute versus chronic coronary disease as assessed by the thrombin generation test(Schattauer, 2008) Paramo, J.A. (José Antonio); Orbe, J. (Josune); Rodriguez, J.A. (José Antonio); Serrano, R. (Rosario); Coma-Canella, I. (Isabel); Martinez-de-Lizarrondo, S. (Sara); Zudaire, M. (Maite)Atherosclerosis is the most common pathophysiologic substrate of coronary artery disease (CAD). Whereas plaque progression and arterial remodeling are critical components in chronic CAD, intracoronary thrombosis over plaque disruption is causally related to acute CAD. It was the objective of this study to investigate the differences between prior acute CAD and chronic CAD by a simple global coagulation assay measuring thrombin generation. A cross-sectional study involving 15 healthy controls, 35 patients with chronic stable CAD, and 60 patients after an episode of acute myocardial infarction (AMI) was performed. Thrombin generation was measured between three and 11 months after the initial diagnosis (mean 6 months) by a commercially available fluorogenic assay (Technothrombin TGA). In each patient the lag phase, velocity index and peak thrombin were obtained from the thrombogram profile. Traditional cardiovascular risk factors were recorded, and the inflammatory markers, fibrinogen and hs-C-reactive protein were determined. Compared with stable CAD patients, showing normal thrombograms, those with previous AMI showed earlier lag phase (p < 0.05) and significant increase of both the velocity index (p < 0.001) and peak thrombin (p < 0.05), indicating faster and higher thrombin generation in the AMI group. Differences in thrombin generation between stable and acute CAD patients remained significant (p < 0.001) after adjusting for conventional CAD risk factors (age, gender, diabetes, hypertension, smoking, and hypercholesterolemia). In conclusion, patients with a previous history of acute CAD showed earlier, faster and higher thrombin generation than stable chronic CAD patients. The thrombin generation test may be of clinical value to monitor hypercoagulable/vulnerable blood and/or guide therapy in CAD.