Author(s)
Keywords
Abstract
Context: Human obesity is associated with increased circulating TNF-α, a proinflammatory cytokine that induces hepatocyte cell death. Objective: The potential beneficial effects of acylated and desacyl ghrelin in the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis in obesity via the inhibition of TNF-α-induced hepatocyte apoptosis, autophagic cell death, and pyroptosis were investigated. Design, settings, and participants: Plasma ghrelin isoforms and TNF-α were measured in 158 participants, and hepatocyte cell death was evaluated in liver biopsies from 76 patients with morbid obesity undergoing bariatric surgery with available liver echography and pathology analysis. The effect of acylated and desacyl ghrelin on basal and TNF-α-induced cell death was determined in vitro in human HepG2 hepatocytes. Results: Circulating TNF-α and the acylated/desacyl ghrelin ratio were increased, whereas desacyl ghrelin levels were decreased in patients with obesity and NAFLD. Six months after bariatric surgery, decreased acylated/desacyl ghrelin levels, and improved hepatic function were found. Patients with obesity and type 2 diabetes showed increased hepatic ghrelin O-acyltransferase transcripts as well as an increased hepatic apoptosis, pyroptosis, and compromised autophagy. In HepG2 hepatocytes, acylated and desacyl ghrelin treatment reduced TNF-α-induced apoptosis, evidenced by lower caspase-8 and caspase-3 cleavage, as well as TUNEL-positive cells and pyroptosis, revealed by decreased caspase-1 activation and lower high-mobility group box 1 expression. Moreover, acylated ghrelin suppressed TNF-α-activated hepatocyte autophagy, as evidenced by a decreased LC3B-II/I ratio and increased p62 accumulation via AMPK/mTOR. Conclusions: Ghrelin constitutes a protective factor against hepatocyte cell death. The increased acylated/desacyl ghrelin ratio in patients with obesity and NAFLD might constitute a compensatory mechanism to overcome TNF-α-induced hepatocyte apoptosis, autophagy, and pyroptosis.