Changes in the nanoparticle uptake and distribution caused by an intramacrophagic parasitic infection
Fecha de publicación : 
2021
Editorial : 
Royal Society of Chemistry
ISSN : 
2040-3364
Cita: 
Calvo, A. (Alba); Moreno, E. (Esther); Clemente, U. (Unai); et al. "Changes in the nanoparticle uptake and distribution caused by an intramacrophagic parasitic infection". Nanoscale. (13), 2021, 17486 - 17503
Resumen
This study investigates if visceral leishmaniasis (VL) infection has some effects on the organ and cellular uptake and distribution of 100–200 nm near-infrared fluorescently labelled non-biodegradable polystyrene latex beads (PS NPs) or biodegradable polylactic-co-glycolic nanoparticles (PLGA NPs), as this parasitic infection produces morphological alterations in liver, spleen and bone marrow, organs highly involved in NP sequestration. The results showed that the magnitude of the effect was specific for each organ and type of NP. With the exception of the liver, the general trend was a decrease in NP organ and cellular uptake, mostly due to immune cell mobilization and/or weight organ gain, as vascular permeability was increased. Moreover, NPs redistributed among different phagocytic cells to adapt infection associated changes and cellular alterations. In the liver, it is noteworthy that only isolated Kuffer cells (KCs) captured NPs, whereas they were not taken up by KC forming granulomas. In the spleen, NPs redistributed from macrophages and dendritic cells towards B cells and inflammatory monocytes although they maintained their preferential accumulation in the marginal zone and red pulp. Comparatively, the infection rarely affected the NP cellular distribution in the bone marrow. NP cellular target changes in VL infection could affect their therapeutic efficacy and should be considered for more efficient drug delivery

Ficheros en este ítem:
Fichero
art2.pdf
Descripción
Tamaño
11.31 MB
Formato
Adobe PDF


Estadísticas e impacto
0 citas en
0 citas en

Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.