Capítulos de libro (Fac. de de Ciencias)
Permanent URI for this collectionhttps://hdl.handle.net/10171/70278
See
4 results
Results
- Green way of improving the thermal efficiency of mortars by the addition of biobased phase change materials(MATEC Web of Conferences, 2024-09-16) Alvarez-Galindo, J.I. (José Ignacio); Rubio-Aguinaga, A. (Andrea); Navarro-Blasco, I. (Iñigo); Fernandez-Alvarez, J.M. (José María)The thermal efficiency of air lime-based mortars was improved by directly integrating varying amounts (5 wt. %, 10 wt. %, and 20 wt. %) of a biobased Phase Change Material (PCM) into the fresh mortars. The composition of this PCM is vegetable oils and other organic wastes from the agri-food sector. To optimise the mortar formulation, different chemical additives and mineral admixtures were added. The mortar formulation was meticulously designed to produce rendering mortars that are easily workable, crack-free, and fully adherent for use in building envelopes. Positive outcomes in thermal efficiency tests have demonstrated the ability of these materials to store thermal latent energy, offering an environmentally friendly alternative to enhance the thermal comfort of building inhabitants.
- Obtaining of repair lime renders with microencapsulated phase change materials: optimization of the composition, application, mechanical and microstructural studies(University of Ljubljana, Slovenia, 2022-09-21) Alvarez-Galindo, J.I. (José Ignacio); Rubio-Aguinaga, A. (Andrea); Navarro-Blasco, I. (Iñigo); Fernandez-Alvarez, J.M. (José María)Different batches of repair lime rendering mortars were designed by mixing microencapsulated Phase Change Materials (PCMs) and other additives. The final aim of these renders is to improve the thermal efficiency of the envelope of the Built Heritage, while allowing the practitioners to apply a render with positive final performance. The combinations of the PCMs in different weight percentages, a superplasticiser (to increase the fluidity of the render keeping constant the mixing water), an adhesion improver and a pozzolanic additive were studied. The adhesion of these renders onto bricks and limestone specimens and the shrinkage and cracking of the mortars were studied in detail. X-ray diffraction technique was used to study the composition and evolution of the carbonation process. Compressive strength measurements were studied in hardened specimens. In addition, the porous structure of the rendering mortars was studied by mercury intrusion porosimetry to assess the effect of the PCMs' addition. Samples underwent accelerated climatic ageing to study their durability and the preservation of the thermal efficiency. Results have shown that these thermally enhanced mortars are feasible materia Is for real-life application in the context of architectural heritage restoration and conservation.
- Enhancement of latent heat storage capacity of lime rendering mortars(University of Ljubljana, Slovenia, 2022-09-21) Alvarez-Galindo, J.I. (José Ignacio); Rubio-Aguinaga, A. (Andrea); Navarro-Blasco, I. (Iñigo); Fernandez-Alvarez, J.M. (José María)Microencapsulated Phase Change Materials (PCMs) were included in air lime rendering mortars in order to improve the thermal comfort of the inhabitants and the energy efficiency of buildings of the Architectural Heritage under the premises of mínimum intervention and maximum compatibility. Three different PCMs were tested and directly added during the mixing process to fresh air lime mortars in three different percentages: 5, 10 and 20 wt. %. Some chemical additives were also incorporated to improve the final performance of the renders: a starch derivative as an adhesion booster; metakaolin as pozzolanic addition to shorten the setting time and to increase the final strength; anda polycarboxylated ether as a superplasticizer to adjust the fluidity of the fresh renders avoiding an excess of mixing water. The specific heat Cp, the enthalpy ti.H ascribed to the phase change and the melting temperature of the PCMs were determined by Differential Scanning Calorimetry (DSC). The capacity of the renders to store/release heat was demonstrated at a laboratory scale. The favourable results proved the effect of these PCMs w ith respect to the thermal performance of these rendering mortars, offering a promising way of enhancement of the thermal efficiency of building materiaIs of the Cultural Heritage.
- Lipid and polymeric nanocapsules(IntechOpen, 2022) Vélaz-Rivas, I. (Icíar); Rochin-Wong, S. (Sarai)In recent years, innovative drug nanocarriers have been developed to enhance stability, bioavailability, and provide sustained release. In this chapter, systems based on natural macromolecules, lipids, or polymeric/polyelectrolyte nanocapsules and their principal chemical and functional characteristics are described. Nano-vesicular systems are especially relevant in different fields. Particularly, a promising potential is offered by systems based on colloidal nanocapsules, that exhibit a typical core-shell structure in which the drug can be confined into the cavity or in the polymeric coating that surrounds it. Both the cavity and the active substance can be lipophilic or hydrophilic and in solid or liquid form depending on the materials and methods used, making these nanocapsules attractive carriers for drug delivery. In addition, a compilation of different methods and materials employed in the preparation of these nanosystems and a recent review of applications of lipid and polymeric nanocapsules have been made, focussing on the encapsulation of drugs.