Depósito Académico

Permanent URI for this communityhttps://hdl.handle.net/10171/1

Las colecciones que forman el Depósito Académico se asemejan a la estructura organizativa de la Universidad de Navarra a fecha de 2010: Facultades, Departamentos, Escuelas, etc.

Para asegurar la identidad de las colecciones, los cambios en los organigramas, posteriores a esa fecha, no se reflejan en el area de Depósito Académico. Si tiene dudas en sus búsquedas puede ponerse en contacto con dadun@unav.es, o realizar una búsqueda a través de 'Título' o 'Autor'

See

Results

Now showing 1 - 10 of 61500
  • Thumbnail Image
    Multidisciplinary analysis of a 750 kW PMSM for marine propulsion including shock loading response.
    (2020) Prieto-Rocandio, B. (Borja); Satrústegui-de-Legarra, M. (Marco); Elósegui-Simón, I. (Ibón); Gil-Negrete, N. (Nere)
    This study presents the electromagnetic, thermal and mechanical analysis of a 750 kW, 1200 rpm, 690 V surface permanent magnet motor aimed at marine propulsion (azimuth thruster). Based on a preliminary machine design, key electromagnetic design aspects including magnet demagnetisation and magnet loss reduction by tangential and axial segmentation are assessed. Then, three different cooling solutions are evaluated via computational fluid dynamics simulations combining the use of a water-jacket surrounding the stator, wafters attached to the rotor structure and the addition of an inner fan. Subsequently, the dynamic design analysis method is applied in order to check the machine's response to shock loadings due to underwater explosions. Finally, a machine prototype is successfully manufactured and tested, showing the proper fulfilment of the design requirements.
  • Thumbnail Image
    Improving the performance of a 1-MW induction machine by optimally shifting from a three-phase to a six-phase machine design by rearranging the coil connections.
    (2021) Paredes-Puente, J. (Jesús); Prieto-Rocandio, B. (Borja); Satrústegui-de-Legarra, M. (Marco); Elósegui-Simón, I. (Ibón); González, P. (Patxi)
    It is well known that multiphase machines exhibit the better performance (efficiency, torque density, fault tolerance, etc.) than three-phase machines. From the manufacturing point of view, it is interesting to have the possibility of improving a machine design by just conducting minor changes in the production process. In this regard, six-phase machines emerge as the natural choice to improve a design without modifying the active parts. This article presents an optimal procedure to shift from a three-phase to a six-phase induction motor design by just rearranging the coil connections. By starting from a three-phase winding design, different six-phase winding arrangements are analyzed. A methodology to define all the possible six-phase winding arrangements is presented. Discard criteria based on balanced radial forces and impedances are defined. Afterward, selected winding candidates are compared in terms of analytical calculations and later on, based on finite element (FE) simulations for a 690 V, 1-MW induction machine design. Different possible configurations are evaluated in terms of stator Joule losses, torque ripple, power factor, and electromagnetic efficiency both under healthy and faulted inverter conditions. Finally, a six-phase machine prototype is tested in order to verify the improvement in machine characteristics, thus validating the proposed method.
  • Thumbnail Image
    On the importance of spiral-flow inflow boundary conditions when using idealized artery geometries in the analysis of liver radioembolization: A parametric study.
    (2020) Ortega, J. (Julio); Antón-Remírez, R. (Raúl); Ramos-González, J. (Juan Carlos); Rivas-Nieto, A. (Alejandro); Sanchez-Larraona, G. (Gorka); Sangro, B. (Bruno); Bilbao, J.I. (José I.); Aramburu-Montenegro, J. (Jorge)
  • Thumbnail Image
    Las fronteras del contrato de trabajo en el Tribunal Superior de Justicia de Murcia
    (Agencia Estatal Boletín Oficial del Estado, 2020) Baviera, I. (Inmaculada)
  • Thumbnail Image
    Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0.
    (2019) Heirendt, L. (Laurent); Arreckx, S. (Sylvain); Pfau, Thomas; Mendoza, S.N. (Sebastián N.); Richelle, A. (Anne); Heinken, Almut; Haraldsdóttir, H.S. (Hulda S.); Wachowiak, J. (Jacek); Keating, S.M. (Sarah M.); Vlasov, V. (Vanja); Magnusdóttir, S. (Stefania); Ng, C. Y. (Chiam Yu); Preciat, G. (German); Zagare, A. (Alise); Chan, S.H.J. (Siu H.J.); Aurich, M.K. (Maike K.); Clancy, C.M. (Catherine M.); Modamio, J. (Jennifer); Sauls, J.T. (John T.); Noronha, A. (Alberto); Bordbar, A. (Aarash); Cousins, B. (Benjamin); El Assal, D.C. (Diana C.); Valcárcel-García, L.V. (Luis Vitores); Apaolaza-Emparanza, I.(Iñigo); Ghaderi, S. (Susan); Ahookhosh, M. (Masoud); Ben Guebila, M. (Marouen); Kostromins, A. (Andrejs); Sompairac, N. (Nicolas); Le, H.M. (Hoai M.); Ma, D. (Ding); Sun, Y. (Yuekai); Wang, L. (Lin); Yurkovich, J.T. (James T.); Oliveira, M.A.P. (Miguel A.P.); Vuong, P.T. (Phan T.); El Assal, L.P. (Lemmer P.); Kuperstein, I. (Inna); Zinovyev, A. (Andrei); Hinton, H.S. (H.Scott); Bryant, W.A. (William A.); Aragón-Artacho, F.J. (Francisco J.); Planes-Pedreño, F.J. (Francisco Javier); Stalidzans, E. (Egils); Maass, A. (Alejandro); Vempala, S. (Santosh); Hucka, M. (Michael); Saunders, M.A. (Michael A.); Maranas, C.D. (Costas D.); Lewis, N.E. (Nathan E.); Sauter, T. (Thomas); Palsson, B. O. (Bernhard O.); Thiele, I. (Inés); Fleming, R.M.T. (Ronan M.T.)
    Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.
  • Thumbnail Image
    Desempleo y Fraude de Ley
    (Thomson Reuters Aranzadi, 2020) Baviera, I. (Inmaculada)