Lorente-Cebrian, S. (Silvia)

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Effects of DHA-Rich n-3 Fatty Acid Supplementation and/or Resistance Training on Body Composition and Cardiometabolic Biomarkers in Overweight and Obese Post-Menopausal Women
    (2021) Lorente-Cebrian, S. (Silvia); Moreno-Aliaga, M. J. (María Jesús); Félix-Soriano, E. (Elisa); García-Unciti, M.S. (María Soledad); Gonzalez-Muniesa, P. (Pedro); Palacios-Samper, N. (Natalia); Cuervo, M. (Marta); Pérez-Chávez, A. (Adriana); Santos, J. (Javier); Cobo-Díez, M.J. (María José); Martínez-Gayo, A. (Alejandro); Goikoetxea-Galarza, I. (Iñaki)
    Resistance training (RT) and n-3 polyunsaturated fatty acids (n-3 PUFA) supplementation have emerged as strategies to improve muscle function in older adults. Overweight/obese postmenopausal women (55-70 years) were randomly allocated to one of four experimental groups, receiving placebo (olive oil) or docosahexaenoic acid (DHA)-rich n-3 PUFA supplementation alone or in combination with a supervised RT-program for 16 weeks. At baseline and at end of the trial, body composition, anthropometrical measures, blood pressure and serum glucose and lipid biomarkers were analyzed. Oral glucose tolerance tests (OGTT) and strength tests were also performed. All groups exhibit a similar moderate reduction in body weight and fat mass, but the RT-groups maintained bone mineral content, increased upper limbs lean mass, decreased lower limbs fat mass, and increased muscle strength and quality compared to untrained-groups. The RT-program also improved glucose tolerance (lowering the OGTT incremental area under the curve). The DHA-rich supplementation lowered diastolic blood pressure and circulating triglycerides and increased muscle quality in lower limbs. In conclusion, 16-week RT-program improved segmented body composition, bone mineral content, and glucose tolerance, while the DHA-rich supplement had beneficial effects on cardiovascular health markers in overweight/obese postmenopausal women. No synergistic effects were observed for DHA supplementation and RT-program combination.
  • Thumbnail Image
    Cerium oxide nanoparticles regulate insulin sensitivity and oxidative markers in 3T3-L1 adipocytes and C2C12 myotubes
    (Hindawi Limited, 2019) Martinez, J.A. (José Alfredo); Lopez-Pascual, A. (Amaya); Lorente-Cebrian, S. (Silvia); Gonzalez-Muniesa, P. (Pedro); Urrutia-Sarratea, A. (Andoni)
    Insulin resistance is associated with oxidative stress, mitochondrial dysfunction, and a chronic low-grade inflammatory status. In this sense, cerium oxide nanoparticles (CeO2 NPs) are promising nanomaterials with antioxidant and anti-inflammatory properties. Thus, we aimed to evaluate the effect of CeO2 NPs in mouse 3T3-L1 adipocytes, RAW 264.7 macrophages, and C2C12 myotubes under control or proinflammatory conditions. Macrophages were treated with LPS, and both adipocytes and myotubes with conditioned medium (25% LPS-activated macrophages medium) to promote inflammation. CeO2 NPs showed a mean size of ≤25.3 nm (96.7%) and a zeta potential of mV, suitable for cell internalization. CeO2 NPs reduced extracellular reactive oxygen species (ROS) in adipocytes with inflammation while increased in myotubes with control medium. The CeO2 NPs increased mitochondrial content was observed in adipocytes under proinflammatory conditions. Furthermore, the expression of Adipoq and Il10 increased in adipocytes treated with CeO2 NPs. In myotubes, both Il1b and Adipoq were downregulated while Irs1 was upregulated. Overall, our results suggest that CeO2 NPs could potentially have an insulin-sensitizing effect specifically on adipose tissue and skeletal muscle. However, further research is needed to confirm these findings.
  • Thumbnail Image
    The association of parental genetic, lifestyle, and social determinants of health with offspring overweight
    (Karger, 2020) Hearne, G. (Gary); Lorente-Cebrian, S. (Silvia); Gonzalez-Muniesa, P. (Pedro); Mavrommatis, Y. (Yiannis); Pedlar, C.R. (Charles R.); Graham, C.A.M. (Catherine A. M.)
    Introduction: In the UK, the number of comorbidities seen in children has increased along with the worsening obesity rate. These comorbidities worsen into adulthood. Genome-wide association studies have highlighted single nucleotide polymorphisms associated with the weight status of adults and offspring individually. To date, in the UK, parental genetic, lifestyle, and social determinants of health have not been investigated alongside one another as influencers of offspring weight status. A comprehensive obesity prevention scheme would commence prior to conception and involve parental intervention including all known risk factors. This current study aims to identify the proportion of overweight that can be explained by known parental risk factors, including genetic, lifestyle, and social determinants of health with offspring weight status in the UK. Methods: A cross-sectional study was carried out on 123 parents. Parental and offspring anthropometric data and parental lifestyle and social determinants of health data were self-reported. Parental genetic data were collected by use of GeneFiX saliva collection vials and genotype were assessed for brain-derived neurotrophic factor (BDNF) gene rs6265, melanocortin 4 receptor (MC4R) gene rs17782313, transmembrane protein 18 (TMEM18) gene rs2867125, and serine/threonine-protein kinase (TNN13K) gene rs1514175. Associations were assessed between parental data and the weight status of offspring. Results: Maternal body mass index modestly predicted child weight status (p < 0.015; R2 = 0.15). More mothers of overweight children carried the MC4R rs17782313 risk allele (77.8%; p = 0.007) compared to mothers of normal-weight children. Additionally, fathers who were not Caucasian and parents who slept for <7 h/night had a larger percentage of overweight children when compared to their counterparts (p = 0.039; p = 0.014, respectively). Conclusion: Associations exist between the weight status of offspring based solely on parental genetic, lifestyle, and social determinants of health data. Further research is required to appropriately address future interventions based on genetic and lifestyle risk groups on a pre-parent cohort.
  • Thumbnail Image
    Maresin 1 activates brown adipose tissue and promotes browning of white adipose tissue in mice
    (Elsevier, 2023) Martinez, J.A. (José Alfredo); Villarroya, F. (Francesc); Escoté-Miró, X. (Xavier); Quesada-López, T. (Tania); Laiglesia-González, L.M. (Laura María); Lorente-Cebrian, S. (Silvia); Collantes, M. (María); Moreno-Aliaga, M. J. (María Jesús); Dalli, J. (Jesmond); Arbones-Mainar, J.M. (José M.); Félix-Soriano, E. (Elisa); Rodriguez-Ortigosa, C.M. (Carlos M.); Santamaría, E. (Eva); Martínez-Fernández, L. (Leyre); Fernandez-Galilea, M. (Marta); Vázquez, S. (Sergio); Herrero, L. (Laura); Valverde, A.M. (Ángela M.); Sainz, N. (Neira); Colón-Mesa, I. (Ignacio)
    Objective: Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning. Methods: MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes. In vivo effects of MaR1 were tested in diet-induced obese (DIO) mice and lean WT and Il6 knockout (Il6 / ) mice. Results: In cultured differentiated murine brown adipocytes, MaR1 reduces the expression of inflammatory genes, while stimulates glucose uptake, fatty acid utilization and oxygen consumption rate, along with the upregulation of mitochondrial mass and genes involved in mitochondrial biogenesis and function and the thermogenic program. In Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6)-depleted brown adipocytes using siRNA, the stimulatory effect of MaR1 on thermogenic genes was abrogated. In DIO mice, MaR1 promotes BAT remodeling, characterized by higher expression of genes encoding for master regulators of mitochondrial biogenesis and function and iBAT thermogenic activation, together with increased M2 macrophage markers. In addition, MaR1-treated DIO mice exhibit a better response to cold-induced BAT activation. Moreover, MaR1 induces a beige adipocyte signature in inguinal WAT of DIO mice and in hMSC-derived adipocytes. MaR1 potentiates Il6 expression in brown adipocytes and BAT of cold exposed lean WT mice. Interestingly, the thermogenic properties of MaR1 were abrogated in Il6 / mice. Conclusions: These data reveal MaR1 as a novel agent that promotes BAT activation and WAT browning by regulating thermogenic program in adipocytes and M2 polarization of macrophages. Moreover, our data suggest that LGR6 receptor is mediating MaR1 actions on brown adipocytes, and that IL-6 is required for the thermogenic effects of MaR1.
  • Thumbnail Image
    Eicosapentaenoic acid stimulates AMP-activated protein kinase and increases visfatin secretion in cultured murine adipocytes
    (Portland Press, 2009) Martinez, J.A. (José Alfredo); Lorente-Cebrian, S. (Silvia); Moreno-Aliaga, M. J. (María Jesús); Bustos, M. (Matilde); Marti-del-Moral, A. (Amelia)
    Visfatin is an adipokine highly expressed in visceral AT (adipose tissue) of humans and rodents, the production of which seems to be dysregulated in excessive fat accumulation and conditions of insulin resistance. EPA (eicosapentaenoic acid), an n−3 PUFA (polyunsaturated fatty acid), has been demonstrated to exert beneficial effects in obesity and insulin resistance conditions, which have been further linked to its reported ability to modulate adipokine production by adipocytes. TNF-α (tumour necrosis factor-α) is a pro-inflammatory cytokine whose production is increased in obesity and is involved in the development of insulin resistance. Control of adipokine production by some insulin-sensitizing compounds has been associated with the stimulation of AMPK (AMP-activated protein kinase). The aim of the present study was to examine in vitro the effects of EPA on visfatin production and the potential involvement of AMPK both in the absence or presence of TNF-α. Treatment with the pro-inflammatory cytokine TNF-α (1 ng/ml) did not modify visfatin gene expression and protein secretion in primary cultured rat adipocytes. However, treatment of these primary adipocytes with EPA (200 μmol/l) for 24 h significantly increased visfatin secretion (P<0.001) and mRNA gene expression (P<0.05). Moreover, the stimulatory effect of EPA on visfatin secretion was prevented by treatment with the AMPK inhibitor Compound C, but not with the PI3K (phosphoinositide 3-kinase) inhibitor LY294002. Similar results were observed in 3T3-L1 adipocytes. Moreover, EPA strongly stimulated AMPK phosphorylation alone or in combination with TNF-α in 3T3-L1 adipocytes and pre-adipocytes. The results of the present study suggest that the stimulatory action of EPA on visfatin production involves AMPK activation in adipocytes.
  • Thumbnail Image
    Second edition of SIMPAR's "Feed Your Destiny" workshop: the role of lifestyle in improving pain management
    (Taylor and Francis Group, 2018) Perna, S. (Simone); Marchesini, M. (Maurizio); Lorente-Cebrian, S. (Silvia); Schatman, M.E. (Michael E.); Martini, D. (Daniela); Giorgio, R. (Roberto) de; Gregori, M. (Manuela) de; Muscoli, C. (Carolina); Mena, P. (Pedro); Arranz, L.I. (Laura Isabel); Belfer, I. (Inna); Villarini, A. (Anna); Salamone, M. (Maurizio); Allegri, M. (Massimo); Rondanelli, M. (Mariangela)
    : This review is aimed to summarize the latest data regarding pain and nutrition, which have emerged during the second edition of Feed Your Destiny (FYD). Theme presentations and interactive discussions were held at a workshop on March 30, 2017, in Florence, Italy, during the 9th Annual Meeting of Study in Multidisciplinary Pain Research, where an international faculty, including recognized experts in nutrition and pain, reported the scientific evidence on this topic from various perspectives. Presentations were divided into two sections. In the initial sessions, we analyzed the outcome variables and methods of measurement for health claims pertaining to pain proposed under Regulation EC No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Moreover, we evaluated how the Mediterranean diet can have a potential impact on pain, gastrointestinal disorders, obesity, cancer, and aging. Second, we discussed the evidence regarding vitamin D as a nutraceutical that may contribute to pain control, evaluating the interindividual variability of pain nature and nurture, and the role of micro-RNAs (miRNAs), polyunsaturated omega 3 fatty acids, and phenolic compounds, with a final revision of the clinical role of nutrition in tailoring pain therapy. The key take-home message provided by the FYD workshop was that a balanced, personalized nutritional regimen might play a role as a synergic strategy that can improve management of chronic pain through a precision medicine approach.
  • Thumbnail Image
    Effects of gut microbiota–derived extracellular vesicles on obesity and diabetes and their potential modulation through diet
    (Springer, 2022) Riezu-Boj, J.I. (José Ignacio); Díez-Sainz, E. (Ester); Lorente-Cebrian, S. (Silvia); Milagro-Yoldi, F.I. (Fermín Ignacio)
    Obesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota–derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet–induced increase of the proteobacterium Pseudomonas panacis–derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet–induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota–derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota–derived EV.
  • Thumbnail Image
    miRNAs and novel food compounds related to the browning process
    (MDPI AG, 2019) Lorente-Cebrian, S. (Silvia); Sánchez, J. (Juana); Milagro-Yoldi, F.I. (Fermín Ignacio); Herrera, K. (Katya); Garza, A.L. (Ana Laura) de la; Castro, H. (Heriberto)
    Obesity prevalence is rapidly increasing worldwide. With the discovery of brown adipose tissue (BAT) in adult humans, BAT activation has emerged as a potential strategy for increasing energy expenditure. Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recognized to be present in certain kinds of white adipose tissue (WAT) depots. It has been suggested that WAT can undergo the process of browning in response to stimuli that induce and enhance the expression of thermogenesis: a metabolic feature typically associated with BAT. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in a variety of tissues, including WAT and BAT. Likewise, it was shown that several food compounds could influence miRNAs associated with browning, thus, potentially contributing to the management of excessive adipose tissue accumulation (obesity) through specific nutritional and dietetic approaches. Therefore, this has created significant excitement towards the development of a promising dietary strategy to promote browning/beiging in WAT to potentially contribute to combat the growing epidemic of obesity. For this reason, we summarize the current knowledge about miRNAs and food compounds that could be applied in promoting adipose browning, as well as the cellular mechanisms involved.