Arenas, F. (Fabián)

Search Results

Now showing 1 - 4 of 4
  • Bicarbonate secretion of mouse cholangiocytes involves Na(+)-HCO(3)(-) cotransport in addition to Na(+)-independent Cl(-)/HCO(3)(-) exchange
    (Wiley Blackwell, 2010) Banales, J.M. (Jesús M.); Oude-Elferink, R.P.J. (Ronald P.J.); Uriarte, I. (Iker); Medina, J.F. (Juan Francisco); Saez, E. (Elena); Prieto, J. (Jesús); Arenas, F. (Fabián)
    Bicarbonate secretion from cholangiocytes is required for appropriate adjustment of primary canalicular bile along the biliary tract. In human and rat cholangiocytes, bicarbonate secretion is mediated by anion exchanger (AE) 2, an electroneutral Na(+)-independent Cl(-)/HCO(3) (-) AE also involved in intracellular pH (pH(i)) regulation. In Ae2(a,b)-deficient mice, pH(i) is increased in lymphocytes and fibroblasts, whereas it is surprisingly normal in cholangiocytes. Here, we analyze the mechanisms for HCO(3) (-) secretion in cultured Ae2(a,b) (+/+) and Ae2(a,b) (-/-) mouse cholangiocytes by microfluorimetric measurement of pH(i) changes upon established perfusion maneuvers. Cl(-) withdrawal by isethionate-based perfusions showed that Ae2(a,b) (+/+) but not Ae2(a,b) (-/-) mouse cholangiocytes can display Cl(-)/HCO(3) (-) exchange, which is therefore entirely mediated by Ae2. Nevertheless, simultaneous withdrawal of Cl(-) and Na(+) revealed that mouse cholangiocytes possess an additional transport activity for HCO(3) (-) secretion not observed in control rat cholangiocytes. Propionate-based maneuvers indicated that this supplemental Na(+)-driven HCO(3) (-)-secreting activity is Cl(-)-independent, consistent with a Na(+)-HCO(3) (-) cotransport (NBC). NBC activity is greater in Ae2(a,b) (-/-) than Ae2(a,b) (+/+) mouse cholangiocytes, and membrane-depolarization experiments showed that it is electrogenic. Consistent with the potential role of Slc4a4/Nbc1 as the involved transporter, Ae2(a,b) (-/-) mouse cholangiocytes exhibit up-regulated expression of this electrogenic NBC carrier. Whereas Ae2-mediated Cl(-)/HCO(3) (-) exchange in Ae2(a,b) (+/+) mouse cholangiocytes is stimulated by cyclic adenosine monophosphate (cAMP) and acetylcholine, the NBC activity is down-regulated by cAMP and adenosine triphosphate (ATP) in Ae2(a,b) (-/-) mouse cholangiocytes. Polarized Ae2(a,b) (-/-) mouse cholangiocytes placed in Ussing chambers show decreased (but not abolished) cAMP-dependent Cl(-) current and increased ATP-dependent/Ca(2+)-activated Cl(-) secretion, which run in parallel with decreased cystic fibrosis transmembrane conductance regulator messenger RNA expression and increased intracellular Ca(2+) levels. Conclusion: Bicarbonate secretion in mouse cholangiocytes involves two differentially regulated activities: Ae2-mediated Cl(-)/HCO(3) (-) exchange and Na(+)-HCO(3) (-) cotransport.
  • Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger
    (Wiley Blackwell, 2006) Banales, J.M. (Jesús M.); Uriarte, I. (Iker); Medina, J.F. (Juan Francisco); Saez, E. (Elena); Rodriguez-Ortigosa, C.M. (Carlos M.); Prieto, J. (Jesús); Arenas, F. (Fabián); Doctor, R.B. (R. Brian)
    Canalicular bile is modified along bile ducts through reabsorptive and secretory processes regulated by nerves, bile salts, and hormones such as secretin. Secretin stimulates ductular cystic fibrosis transmembrane conductance regulator (CFTR)-dependent Cl- efflux and subsequent biliary HCO3- secretion, possibly via Cl-/HCO3- anion exchange (AE). However, the contribution of secretin to bile regulation in the normal rat, the significance of choleretic bile salts in secretin effects, and the role of Cl-/HCO3- exchange in secretin-stimulated HCO3- secretion all remain unclear. Here, secretin was administered to normal rats with maintained bile acid pool via continuous taurocholate infusion. Bile flow and biliary HCO3- and Cl- excretion were monitored following intrabiliary retrograde fluxes of saline solutions with and without the Cl- channel inhibitor 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) or the Cl-/HCO3- exchange inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Secretin increased bile flow and biliary excretion of HCO3- and Cl-. Interestingly, secretin effects were not observed in the absence of taurocholate. Whereas secretin effects were all blocked by intrabiliary NPPB, DIDS only inhibited secretin-induced increases in bile flow and HCO3- excretion but not the increased Cl- excretion, revealing a role of biliary Cl-/HCO3- exchange in secretin-induced, bicarbonate-rich choleresis in normal rats. Finally, small hairpin RNA adenoviral constructs were used to demonstrate the involvement of the Na+-independent anion exchanger 2 (AE2) through gene silencing in normal rat cholangiocytes. AE2 gene silencing caused a marked inhibition of unstimulated and secretin-stimulated Cl-/HCO3- exchange. In conclusion, maintenance of the bile acid pool is crucial for secretin to induce bicarbonate-rich choleresis in the normal rat and that this occurs via a chloride-bicarbonate exchange process consistent with AE2 function.
  • Thumbnail Image
    Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells
    (American Society for Clinical Investigation, 2008) Medina, J.F. (Juan Francisco); Uriz, M. (Miriam); Prieto, J. (Jesús); Arenas, F. (Fabián); Hervias, I. (Isabel); Joplin, R. (Ruth)
    Primary biliary cirrhosis (PBC) is a cholestatic disease associated with autoimmune phenomena and alterations in both biliary bicarbonate excretion and expression of the bicarbonate carrier AE2. The bile acid ursodeoxycholic acid (UCDA) is currently used in treatment of cholestatic liver diseases and is the treatment of choice in PBC; however, a subset of PBC patients respond poorly to UDCA monotherapy. In these patients, a combination of UDCA and glucocorticoid therapy appears to be beneficial. To address the mechanism of this benefit, we analyzed the effects of UDCA and dexamethasone on AE2 gene expression in human liver cells from hepatocyte and cholangiocyte lineages. The combination of UDCA and dexamethasone, but not UDCA or dexamethasone alone, increased the expression of liver-enriched alternative mRNA isoforms AE2b1 and AE2b2 and enhanced AE2 activity. Similar effects were obtained after replacing UDCA with UDCA conjugates. In in vitro and in vivo reporter assays, we found that a UDCA/dexamethasone combination upregulated human AE2 alternate overlapping promoter sequences from which AE2b1 and AE2b2 are expressed. In chromatin immunoprecipitation assays, we demonstrated that combination UCDA/dexamethasone treatment induced p300-related interactions between HNF1 and glucocorticoid receptor on the AE2 alternate promoter. Our data provide a potential molecular explanation for the beneficial effects of the combination of UDCA and glucocorticoids in PBC patients with inadequate response to UDCA monotherapy.
  • Thumbnail Image
    Promoter hypermethylation of the AE2/SLC4A2 gene in PBC
    (Elsevier, 2019) Medina, J.F. (Juan Francisco); Saez, E. (Elena); Melero, S. (Saida); Prieto, J. (Jesús); Arenas, F. (Fabián); Parés, A. (Albert); Hervias, I. (Isabel)
    Primary biliary cholangitis (PBC) is a chronic immuneassociated cholestatic liver disease with unclear complex/multifactorial etiopathogenesis affecting mostly middle-aged women. Patients with PBC exhibit reduced expression of the AE2/SLC4A2 gene. Herein, we found that AE2 promoter regions are hypermethylated in the liver and peripheral blood mononuclear cells of patients with PBC. This increased methylation is associated with downregulated AE2-gene expression, which might contribute to the pathogenesis of PBC. Therefore, novel epigenetic targets may improve treatment in patients with PBC who respond poorly to current pharmacological therapies.