Mazzolini, G. (Guillermo)

Search Results

Now showing 1 - 10 of 33
  • Thumbnail Image
    MAGE antigens: therapeutic targets in hepatocellular carcinoma?
    (Elsevier, 2004) Mazzolini, G. (Guillermo); Alfaro, C. (Carlos); Melero, I. (Ignacio); Sarobe, P. (Pablo); Feijoo, E. (Esperanza)
  • Thumbnail Image
    Adenoviral gene transfer of interleukin 12 into tumors synergizes with adoptive T cell therapy both at the induction and effector level
    (Mary Ann Liebert, 2000) Mazzolini, G. (Guillermo); Duarte, M. (Marina); Borras-Cuesta, F. (Francisco); Qian, C. (Cheng); Barajas, M. (Miguel); Melero, I. (Ignacio); Narvaiza, I. (Íñigo); Prieto, J. (Jesús); Xie, X. (Xiaoming)
    Tumors infected with a recombinant defective adenovirus expressing interleukin 12 (IL-12) undergo regression, associated with a cytotoxic T lymphocyte (CTL)-mediated antitumor immune response. In the present study we generated anti-CT26 CTLs by short-term coculture of CT26 cells and lymph node cells obtained from mice harboring subcutaneous CT26 tumors injected with an adenoviral vector expressing IL-12 (AdCMVIL-12), control adenovirus (AdCMVlacZ), or saline. Regression of small intrahepatic CT26 tumors in unrelated syngeneic animals was achieved with CTLs derived from mice whose subcutaneous tumors had been injected with AdCMVIL-12 but not with CTLs from the other two control groups. The necessary and sufficient effector cell population for adoptive transfer consisted of CD8+ T cells that showed anti-CT26 specificity partly directed against the AH1 epitope presented by H-2Ld. Interestingly, treatment of a subcutaneous tumor nodule with AdCMVIL-12, combined with intravenous adoptive T cell therapy with short-term CTL cultures, had a marked synergistic effect against large, concomitant live tumors. Expression of IL-12 in the liver in the vicinity of the hepatic tumor nodules, owing to spillover of the vector into the systemic circulation, appeared to be involved in the increased in vivo antitumor activity of injected CTLs. In addition, adoptive T cell therapy improved the outcome of tumor nodules transduced with suboptimal doses of AdCMVIL-12. Our data provide evidence of a strong synergy between gene transfer of IL-12 and adoptive T cell therapy. This synergy operates both at the induction and effector phases of the CTL response, thus providing a rationale for combined therapeutic strategies for human malignancies.
  • Thumbnail Image
    Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12
    (Nature Publishing Group, 1999) Mazzolini, G. (Guillermo); Qian, C. (Cheng); Sun, Y. (Yonglian); Prieto, J. (Jesús); Xie, X. (Xiaoming); Drozdzik, M. (Marek); Lasarte, J.J. (Juan José)
    Interleukin-12 (IL-12) has been shown to possess potent immunoregulatory and antitumoral effects. We have evaluated the anti-oncogenic potential and the mechanisms of the antitumoral effect of in vivo adenovirus-mediated transfer of IL-12 gene in a murine model of colon cancer. AdCMVIL-12 was constructed to permit coordinated production of p40 and p35 subunits of IL-12 gene to obtain the maximum IL-12 bioactivity. Infection of murine colon cancer CT-26 cells in vitro with AdCMVIL-12 resulted in the production of high levels of IL-12. In vivo gene therapy of colon cancer nodules by intratumoral injection of AdCMVIL-12 induced a local increase in IL-12 and interferon-gamma levels and a complete regression of the tumor in 26 of 34 (76%) mice. Tumor disappeared between days 7 and 10 after vector administration. The antitumoral effect was mediated by CD8+ T cells and was associated with the generation of cytotoxic T lymphocytes against colon cancer cells. Animals that eliminated the tumor were protected against a second administration of neoplastic cells. Treatment with AdCMVIL-12 of one tumor nodule also caused regression of established tumors at distant sites. These data demonstrate that AdCMVIL-12 is a useful therapeutic tool for established colon cancer in mice and should be considered for application in humans.
  • Thumbnail Image
    Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens
    (Wiley-Blackwell, 2004) Mazzolini, G. (Guillermo); Alfaro, C. (Carlos); Duarte, M. (Marina); Qian, C. (Cheng); Melero, I. (Ignacio); Prieto, J. (Jesús); Tirapu, I. (Íñigo); Feijoo, E. (Esperanza); Chen, L. (Lieping); Arina, A. (Ainhoa)
    Intralesional administration of cultured dendritic cells (DCs) engineered to produce IL-12 by in vitro infection with recombinant adenovirus frequently displays eradicating efficacy against established subcutaneous tumors derived from the CT26 murine colon carcinoma cell line. The elicited response is mainly mediated by cytolytic T lymphocytes. In order to search for strategies that would enhance the efficacy of the therapeutic procedure against less immunogenic tumors, we moved onto malignancies derived from the inoculation of MC38 colon cancer cells that are less prone to undergo complete regression upon a single intratumoral injection of IL-12-secreting DCs. In this model, we found that repeated injections of such DCs, as opposed to a single injection, achieved better efficacy against both the injected and a distantly implanted tumor; that the use of semiallogeneic DCs that are mismatched in one MHC haplotype with the tumor host showed slightly better efficacy; and that the combination of this treatment with systemic injections of immunostimulatory anti-CD137 (4-1BB) monoclonal antibody achieved potent combined effects that correlated with the antitumor immune response measured in IFN-gamma ELISPOT assays. The elicited systemic immune response eradicates concomitant untreated lesions in most cases. Curative efficacy was also found against some tumors established for 2 weeks when these strategies were used in combination. These are preclinical pieces of evidence to be considered in order to enhance the therapeutic benefit of a strategy that is currently being tested in clinical trials. Supplementary Material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.
  • Thumbnail Image
    Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas
    (Nature Publishing Group, 1999) Mazzolini, G. (Guillermo); Duarte, M. (Marina); Qian, C. (Cheng); Sangro, B. (Bruno); Melero, I. (Ignacio); Prieto, J. (Jesús); Bustos, M. (Matilde); Ruiz, J. (Juan); Galofre, J.C. (Juan Carlos)
    Stimulation of the antitumor immune response by dendritic cells (DC) is critically dependent on their tightly regulated ability to produce interleukin-12 (IL-12). To enhance this effect artificially, bone marrow (BM)-derived DC were genetically engineered to produce high levels of functional IL-12 by ex vivo infection with a recombinant defective adenovirus (AdCMVIL-12). DC-expressing IL-12 injected into the malignant tissue eradicated 50-100% well established malignant nodules derived from the injection of two murine colon adenocarcinoma cell lines. Successful therapy was dependent on IL-12 transfection and was mediated only by syngeneic, but not allogeneic BM-derived DC, indicating that compatible antigen-presenting molecules were required. The antitumor effect was inhibited by in vivo depletion of CD8+ T cells and completely abrogated by simultaneous depletion with anti-CD4 and anti-CD8 mAbs. Mice which had undergone tumor regression remained immune to a rechallenge with tumor cells, showing the achievement of long-lasting systemic immunity that also was able to reject simultaneously induced concomitant untreated tumors. Tumor regression was associated with a detectable CTL response directed against tumor-specific antigens probably captured by DC artificially released inside tumor nodules. Our results open the possibility of similarly treating the corresponding human malignancies.
  • Thumbnail Image
    An anti-ICAM-2 (CD102) monoclonal antibody induces immune-mediated regressions of transplanted ICAM-2-negative colon carcinomas
    (American Association for Cancer Research, 2002) Albar, J.P. (Juan P.); Mazzolini, G. (Guillermo); Gabari, I. (Izaskun); Melero, I. (Ignacio); Prieto, J. (Jesús); Tirapu, I. (Íñigo); Camafeita, E. (Emilio); Relloso, M. (Miguel); Schmitz, V. (Volker); Rodriguez-Calvillo, M. (Mercedes); Corbi, A.L. (Angel L.)
    Monoclonal antibodies (mAbs) can mediate antitumor effects by indirect mechanisms involving antiangiogenesis and up-regulation of the cellular immune response rather than by direct tumor cell destruction. From mAbs raised by immunization of rats with transformed murine endothelial cells, a mAb (EOL4G8) was selected for its ability to eradicate a fraction of established colon carcinomas that did not express the EOL4G8-recognized antigen. The antigen was found to be ICAM-2 (CD102). Antitumor effects of EOL4G8, which required a functional T-cell compartment, were abrogated by depletion of CD8(+) cells and correlated with antitumor CTL activity, whereas only a mild inhibition of angiogenesis was observed. Interestingly, we found that EOL4G8 acting on endothelial ICAM-2 markedly enhances leukotactic factor activity-1-independent adhesion of immature dendritic cells to endothelium-an effect that is at least in part mediated by DC-SIGN (CD209).
  • Thumbnail Image
    Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins
    (AACR, 2014) Mazzolini, G. (Guillermo); Alfaro, C. (Carlos); Rizzo, M. (Manglio); Perez-Gracia, J.L. (Jose Luis); Munoz-Calleja, C. (Cecilia); Martin-Algarra, S. (Salvador); Rodriguez, I. (Inmaculada); Rodriguez-Ruiz, M.E. (María Esperanza); Carranza, O. (Omar); Fernández-Landázuri, S. (Sara); Lopez-Picazo, J.M. (José M.); Sangro, B. (Bruno); Oñate, C. (Carmen); Andueza, M.P. (Maria P.); Melero, I. (Ignacio); Gross, S. (Stefanie); Perez, G. (Guiomar); González, Á. (Álvaro); Pascual, J.I. (Juan Ignacio); Fernandez-Sanmamed, M. (Miguel)
    Purpose: Interleukin-8 (IL8) is a chemokine produced by malignant cells of multiple cancer types. It exerts various functions in shaping protumoral vascularization and inflammation/immunity. We evaluated sequential levels of serum IL8 in preclinical tumor models and in patients to assess its ability to estimate tumor burden. Experimental Design:IL8levels were monitored by sandwich ELISAsin cultured tumor cells supernatants, tumor-xenografted mice serum, and in samples from 126 patients with cancer. We correlated IL8 serum levels with baseline tumor burden and with treatment-induced changes in tumor burden, as well as with prognosis. Results: IL8 concentrations correlated with the number of IL8-producing tumor cells in culture. In xenografted neoplasms, IL8 serum levels rapidly dropped after surgical excision, indicating an accurate correlation with tumor burden. In patients with melanoma (n ¼ 16), renal cell carcinoma (RCC; n ¼ 23), non–small cell lung cancer (NSCLC; n ¼ 21), or hepatocellular carcinoma (HCC; n ¼ 30), serum IL8 concentrations correlated with tumor burden and stage, survival (melanoma, n ¼ 16; RCC, n ¼ 23; HCC, n ¼ 33), and objective responses to therapy, including those to BRAF inhibitors (melanoma, n ¼ 16) and immunomodulatory monoclonal antibodies (melanoma, n ¼ 8). IL8 concentrations in urine (n ¼ 18) were mainly elevated in tumors with direct contact with the urinary tract. Conclusions: IL8 levels correlate with tumor burden in preclinical models and in patients with cancer. IL8 is a potentially useful biomarker to monitor changes in tumor burden following anticancer therapy, and has prognostic significance.
  • Thumbnail Image
    Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12
    (Wiley Blackwell, 2001) Mazzolini, G. (Guillermo); Genove, G. (Guillem); Qian, C. (Cheng); Sangro, B. (Bruno); Barajas, M. (Miguel); Bilbao, R. (Roberto); Melero, I. (Ignacio); Narvaiza, I. (Íñigo); Prieto, J. (Jesús); Schmitz, V. (Volker)
    The use of gene therapy to enhance antitumor immunity has emerged as a promising procedure to fight cancer. In this study we have tested the ability of an adenovirus carrying interleukin 12 (IL-12) gene (AdCMVIL-12) to eliminate tumoral lesions in 3 animal models of orthotopic hepatocellular carcinoma (HCC). Intratumoral injection of AdCMVIL-12 in animals with a single big tumor nodule implanted in the liver resulted in significant inhibition of tumor growth in a dose-dependent manner. Fifty percent of animals that received a dose of 5 x 10(9) plaque-forming units, showed complete regression of the tumor 2 weeks after treatment. In animals with 2 independent tumor nodules in the left liver lobe, injection in only one of them of 5 x 10(9) pfu AdCMVIL-12 induced, 15 days after therapy, complete regression of 50% of treated tumors and also of 50% of untreated lesions, with 60% long-term survival. Rats that were tumor free after therapy with AdCMVIL-12 showed protection against tumor rechallenge. A group of rats received the carcinogen diethylnitrosamine and developed multiple hepatic dysplasic nodules of 1 to 5 mm in diameter. These animals were treated by intrahepatic artery injection of either AdCMVIL-12 (5 x 10(9) pfu) or control vector. In this model AdCMVIL-12 induced complete tumor regression in 20% of treated rats and inhibited tumor growth in 60% of cases with an increase in rat survival. Activation of natural killer (NK) cells and inhibition of angiogenesis were found to be antitumor mechanisms set in motion by AdCMVIL-12. Our data indicate that experimental HCC can be efficiently treated by intratumoral or intravascular injection of adenovirus expressing IL-12.
  • Thumbnail Image
    Anti-ICAM-2 monoclonal antibody synergizes with intratumor gene transfer of interleukin-12 inhibiting activation-induced T-cell death
    (American Association for Cancer Research, 2003) Mazzolini, G. (Guillermo); Alfaro, C. (Carlos); Gabari, I. (Izaskun); Baixeras, E. (Elena); Qian, C. (Cheng); Melero, I. (Ignacio); Prieto, J. (Jesús); Tirapu, I. (Íñigo); Feijoo, E. (Esperanza); Arina, A. (Ainhoa)
    PURPOSE: Systemic treatment with an anti-ICAM-2 monoclonal antibody (mAb; EOL4G8) eradicates certain established mouse tumors through a mechanism dependent on the potentiation of a CTL-mediated response. However, well-established tumors derived from the MC38 colon carcinoma cell line were largely refractory to this treatment as well as to intratumor injection of a recombinant adenovirus encoding interleukin-12 (IL-12; AdCMVIL-12). We sought to design combined therapy strategies with AdCMVIL-12 plus anti-ICAM-2 mAbs and to identify their mechanism of action. EXPERIMENTAL DESIGN: Analysis of antitumor and toxic effects were performed with C57BL/6 mice bearing established MC38 tumors. Anti-ovalbumin T-cell receptor transgenic mice and tumors transfected with this antigen were used for in vitro and in vivo studies on activation-induced cell death (AICD) of CD8(+) T cells. RESULTS: Combined treatment with various systemic doses of EOL4G8 mAb plus intratumor injection of AdCMVIL-12 induced complete regression of MC38 tumors treated 7 days after implantation. Unfortunately, most of such mice succumbed to a systemic inflammatory syndrome that could be prevented if IFN-gamma activity were neutralized once tumors had been rejected. Importantly, dose reduction of EOL4G8 mAb opened a therapeutic window (complete cure of 9 of 18 cases without toxicity). We also show that ICAM-2 ligation by EOL4G8 mAb on activated CTLs prevents AICD, thus extending IFN-gamma production. CONCLUSIONS: Combination of intratumor gene transfer of IL-12and systemic anti-ICAM-2 mAb display synergistic therapeutic and toxic effects. CTL life extension resulting from AICD inhibition by anti-ICAM-2 mAbs is the plausible mechanism of action.
  • Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors
    (American Society of Clinical Oncology, 2004) Benito-Boilos, A. (Alberto); Mazzolini, G. (Guillermo); Lacasa, C. (Carlos); Olagüe, C. (Cristina); Herraiz-Bayod, M.J. (Maite J.); Qian, C. (Cheng); Subtil, J.C. (José Carlos); Sola, J. (Josu); Sangro, B. (Bruno); Larrache, J. (Javier); Melero, I. (Ignacio); Prieto, J. (Jesús); Herrero, J.I. (José Ignacio); Sadaba, B. (Belén); Quiroga, J. (Jorge); Ruiz, J. (Juan); Pueyo, J. (Jesús)
    PURPOSE: To evaluate the feasibility and safety of intratumoral injection of an adenoviral vector encoding human interleukin-12 genes (Ad.IL-12) and secondarily, its biologic effect for the treatment of advanced digestive tumors. PATIENTS AND METHODS: Ad.IL-12 was administered in doses ranging from 2.5 x 10(10) to 3 x 10(12) viral particles, to seven cohorts of patients with advanced pancreatic, colorectal, or primary liver malignancies. Patients were thoroughly assessed for toxicity, and antitumor response was evaluated by imaging techniques, tumor biopsy, and hypersensitivity skin tests. Patients with stable disease and no serious adverse reactions were allowed to receive up to 3 monthly doses of Ad.IL-12. RESULTS: Twenty-one patients (nine with primary liver, five with colorectal, and seven with pancreatic cancers) received a total of 44 injections. Ad.IL-12 was well tolerated, and dose-limiting toxicity was not reached. Frequent but transient adverse reactions, including fever, malaise, sweating, and lymphopenia, seemed to be related to vector injection rather than to transgene expression. No cumulative toxicity was observed. In four of 10 assessable patients, a significant increase in tumor infiltration by effector immune cells was apparent. A partial objective remission of the injected tumor mass was observed in a patient with hepatocellular carcinoma. Stable disease was observed in 29% of patients, mainly those with primary liver cancer. CONCLUSION: Intratumoral injection of up to 3 x 10(12) viral particles of Ad.IL-12 to patients with advanced digestive malignancies is a feasible and well-tolerated procedure that exerts only mild antitumor effects.