Pérez-Chávez, A. (Adriana)

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Effects of DHA-Rich n-3 Fatty Acid Supplementation and/or Resistance Training on Body Composition and Cardiometabolic Biomarkers in Overweight and Obese Post-Menopausal Women
    (2021) Lorente-Cebrian, S. (Silvia); Moreno-Aliaga, M. J. (María Jesús); Félix-Soriano, E. (Elisa); García-Unciti, M.S. (María Soledad); Gonzalez-Muniesa, P. (Pedro); Palacios-Samper, N. (Natalia); Cuervo, M. (Marta); Pérez-Chávez, A. (Adriana); Santos, J. (Javier); Cobo-Díez, M.J. (María José); Martínez-Gayo, A. (Alejandro); Goikoetxea-Galarza, I. (Iñaki)
    Resistance training (RT) and n-3 polyunsaturated fatty acids (n-3 PUFA) supplementation have emerged as strategies to improve muscle function in older adults. Overweight/obese postmenopausal women (55-70 years) were randomly allocated to one of four experimental groups, receiving placebo (olive oil) or docosahexaenoic acid (DHA)-rich n-3 PUFA supplementation alone or in combination with a supervised RT-program for 16 weeks. At baseline and at end of the trial, body composition, anthropometrical measures, blood pressure and serum glucose and lipid biomarkers were analyzed. Oral glucose tolerance tests (OGTT) and strength tests were also performed. All groups exhibit a similar moderate reduction in body weight and fat mass, but the RT-groups maintained bone mineral content, increased upper limbs lean mass, decreased lower limbs fat mass, and increased muscle strength and quality compared to untrained-groups. The RT-program also improved glucose tolerance (lowering the OGTT incremental area under the curve). The DHA-rich supplementation lowered diastolic blood pressure and circulating triglycerides and increased muscle quality in lower limbs. In conclusion, 16-week RT-program improved segmented body composition, bone mineral content, and glucose tolerance, while the DHA-rich supplement had beneficial effects on cardiovascular health markers in overweight/obese postmenopausal women. No synergistic effects were observed for DHA supplementation and RT-program combination.
  • Thumbnail Image
    Oxidative stress and non-alcoholic fatty liver disease: effects of omega-3 fatty acid supplementation
    (MDPI AG, 2019) Martinez, J.A. (José Alfredo); Moreno-Aliaga, M. J. (María Jesús); Gonzalez-Muniesa, P. (Pedro); Pérez-Chávez, A. (Adriana); Martínez-Fernández, L. (Leyre); Fernandez-Galilea, M. (Marta); Yang, J. (Jinchunzi)
    Aging is a complex phenomenon characterized by the progressive loss of tissue and organ function. The oxidative-stress theory of aging postulates that age-associated functional losses are due to the accumulation of ROS-induced damage. Liver function impairment and non-alcoholic fatty liver disease (NAFLD) are common among the elderly. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and evolve to hepatic cirrhosis or hepatic carcinoma. Oxidative stress, lipotoxicity, and inflammation play a key role in the progression of NAFLD. A growing body of evidence supports the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFA), mainly docosahaexenoic (DHA) and eicosapentaenoic acid (EPA), on metabolic diseases based on their antioxidant and anti-inflammatory properties. Here, we performed a systematic review of clinical trials analyzing the efficacy of n-3 PUFA on both systemic oxidative stress and on NAFLD/NASH features in adults. As a matter of fact, it remains controversial whether n-3 PUFA are effective to counteract oxidative stress. On the other hand, data suggest that n-3 PUFA supplementation may be effective in the early stages of NAFLD, but not in patients with more severe NAFLD or NASH. Future perspectives and relevant aspects that should be considered when planning new randomized controlled trials are also discussed.